Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly

医学 肝硬化 阶段(地层学) 放射科 接收机工作特性 分割 门脉高压 淋巴瘤 脾脏 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Aymen Meddeb,Tabea Kossen,Keno K. Bressem,Noah Molinski,Bernd Hamm,Sebastian N. Nagel
出处
期刊:Cancers [MDPI AG]
卷期号:14 (22): 5476-5476 被引量:2
标识
DOI:10.3390/cancers14225476
摘要

Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助吴漾采纳,获得10
1秒前
3秒前
3秒前
zhang完成签到,获得积分10
3秒前
3秒前
4秒前
小马甲应助111采纳,获得30
4秒前
4秒前
4秒前
6秒前
7秒前
7秒前
8秒前
十一完成签到,获得积分20
8秒前
vince完成签到 ,获得积分10
8秒前
fei菲飞发布了新的文献求助10
8秒前
gardenia发布了新的文献求助10
8秒前
Henvy发布了新的文献求助10
9秒前
sunrise发布了新的文献求助10
9秒前
赘婿应助露露杏仁露采纳,获得10
10秒前
asdfzxcv应助zy采纳,获得10
11秒前
哈哈完成签到,获得积分10
12秒前
心海发布了新的文献求助10
12秒前
忧郁虔发布了新的文献求助10
12秒前
啊啊啊完成签到,获得积分10
12秒前
陈谨诺完成签到,获得积分10
13秒前
头哥完成签到,获得积分10
13秒前
1111发布了新的文献求助10
13秒前
15秒前
ww完成签到,获得积分10
16秒前
17秒前
科研通AI6应助心灵美的斓采纳,获得10
17秒前
17秒前
哈哈发布了新的文献求助10
17秒前
duoduo完成签到,获得积分20
17秒前
PY完成签到,获得积分10
18秒前
sophiey发布了新的文献求助10
18秒前
18秒前
19秒前
瘦瘦的雨莲完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609