Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly

医学 肝硬化 阶段(地层学) 放射科 接收机工作特性 分割 门脉高压 淋巴瘤 脾脏 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Aymen Meddeb,Tabea Kossen,Keno K. Bressem,Noah Molinski,Bernd Hamm,Sebastian N. Nagel
出处
期刊:Cancers [MDPI AG]
卷期号:14 (22): 5476-5476 被引量:2
标识
DOI:10.3390/cancers14225476
摘要

Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
SInyi发布了新的文献求助10
1秒前
奋斗夏烟发布了新的文献求助10
2秒前
魏魏发布了新的文献求助10
2秒前
酷波er应助Zoe采纳,获得10
2秒前
傲震发布了新的文献求助10
3秒前
4秒前
tytyty完成签到,获得积分10
4秒前
活泼秋玲发布了新的文献求助10
4秒前
阳光姝发布了新的文献求助10
4秒前
4秒前
4秒前
黑森林发布了新的文献求助10
5秒前
5秒前
5秒前
深情安青应助小风吹着采纳,获得10
6秒前
张亚娟完成签到,获得积分10
6秒前
在水一方应助slx采纳,获得10
6秒前
ZM完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
9秒前
田様应助小米粥采纳,获得10
9秒前
livialiu发布了新的文献求助10
10秒前
Jasper应助高高采纳,获得10
11秒前
11秒前
11秒前
123发布了新的文献求助10
11秒前
k_1发布了新的文献求助10
11秒前
乐乐应助luyan采纳,获得10
12秒前
12秒前
FashionBoy应助易只羊采纳,获得30
12秒前
12秒前
13秒前
F2022发布了新的文献求助10
13秒前
zxm完成签到 ,获得积分10
14秒前
Chara_kara完成签到,获得积分10
14秒前
Bazinga发布了新的文献求助10
14秒前
大黄人发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478