亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly

医学 肝硬化 阶段(地层学) 放射科 接收机工作特性 分割 门脉高压 淋巴瘤 脾脏 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Aymen Meddeb,Tabea Kossen,Keno K. Bressem,Noah Molinski,Bernd Hamm,Sebastian N. Nagel
出处
期刊:Cancers [MDPI AG]
卷期号:14 (22): 5476-5476 被引量:2
标识
DOI:10.3390/cancers14225476
摘要

Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
J_Xu完成签到 ,获得积分10
8秒前
所所应助凛玖niro采纳,获得10
39秒前
51秒前
凛玖niro发布了新的文献求助10
57秒前
霖槿完成签到,获得积分10
58秒前
1分钟前
十八完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
liuliu发布了新的文献求助30
2分钟前
2分钟前
烟花应助Li采纳,获得10
2分钟前
liuliu完成签到,获得积分20
2分钟前
2分钟前
3分钟前
ataybabdallah完成签到,获得积分10
3分钟前
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
3分钟前
上官若男应助Marshall采纳,获得10
3分钟前
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
kdjm688完成签到,获得积分10
4分钟前
彭于晏应助蓝色牛马采纳,获得10
4分钟前
4分钟前
蓝色牛马发布了新的文献求助10
4分钟前
4分钟前
4分钟前
9527完成签到,获得积分10
4分钟前
Li发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587