Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly

医学 肝硬化 阶段(地层学) 放射科 接收机工作特性 分割 门脉高压 淋巴瘤 脾脏 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Aymen Meddeb,Tabea Kossen,Keno K. Bressem,Noah Molinski,Bernd Hamm,Sebastian N. Nagel
出处
期刊:Cancers [MDPI AG]
卷期号:14 (22): 5476-5476 被引量:2
标识
DOI:10.3390/cancers14225476
摘要

Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白开水关注了科研通微信公众号
刚刚
如意幼枫完成签到,获得积分10
刚刚
LALA发布了新的文献求助10
刚刚
ww发布了新的文献求助30
2秒前
JamesPei应助Lin采纳,获得10
2秒前
2秒前
2秒前
直率清炎完成签到,获得积分10
3秒前
酷波er应助jankac采纳,获得10
3秒前
隐形曼青应助青柠采纳,获得10
5秒前
6秒前
6秒前
6秒前
魁梧的小笼包完成签到,获得积分10
7秒前
哈哈完成签到 ,获得积分10
8秒前
8秒前
WCM完成签到,获得积分10
8秒前
慕青应助马儿咯咯哒采纳,获得10
10秒前
SciGPT应助贾克斯采纳,获得10
10秒前
科研通AI2S应助明理鸡采纳,获得20
10秒前
11秒前
childe发布了新的文献求助10
11秒前
amell发布了新的文献求助10
11秒前
11秒前
wheat完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
LHS应助狂野萤采纳,获得20
13秒前
13秒前
ceeray23发布了新的文献求助20
13秒前
白开水发布了新的文献求助10
14秒前
14秒前
单纯的映真完成签到,获得积分10
15秒前
15秒前
都安发布了新的文献求助10
15秒前
shenlaizhibi完成签到,获得积分10
15秒前
DANNI完成签到,获得积分20
15秒前
ouou关注了科研通微信公众号
15秒前
冷静傲丝完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572857
求助须知:如何正确求助?哪些是违规求助? 4658866
关于积分的说明 14723060
捐赠科研通 4598750
什么是DOI,文献DOI怎么找? 2523940
邀请新用户注册赠送积分活动 1494624
关于科研通互助平台的介绍 1464638