Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content

叶面积指数 植被(病理学) 天蓬 遥感 概括性 环境科学 叶绿素 稳健性(进化) 经验模型 土壤科学 计算机科学 植物 化学 地质学 模拟 基因 病理 心理学 有机化学 生物 心理治疗师 医学 生物化学
作者
Dong Li,Jing M. Chen,Weiguo Yu,Hengbiao Zheng,Xia Yao,Weixing Cao,Dandan Wei,Chenchao Xiao,Yan Zhu,Tao Cheng
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113284-113284 被引量:34
标识
DOI:10.1016/j.rse.2022.113284
摘要

Leaf chlorophyll content (LCC) is an important indicator of foliar nitrogen status and photosynthetic capacity. Compared to physical models, the generality of empirical models based on vegetation indices is often questioned when they are used to estimate LCC due to the influence from canopy structure, such as leaf area index (LAI). A recent study developed the LAI-insensitive chlorophyll index (LICI) and established a semi-empirical LICI-based LCC quantification model, which inherits both the robustness of physical models and the simplicity of empirical models. However, it is unclear whether such a simple model is as accurate and generic as physical models. Here, we adopted an innovative approach to disentangle the confounding effects of LAI and LCC on LICI and found that LICI was strongly correlated to LCC but only marginally sensitive to LAI. Moreover, we also found that LICI was sensitive to the soil background and thus proposed a spectral separation of soil and vegetation (3SV) algorithm, which is automatic and does not require prior information of soil background. After implementing the 3SV algorithm to remove the contributed reflectance of soil, we then obtained the contributed reflectance of vegetation (CRv). Model simulations showed that the soil background effect on the CRv-derived LICI was largely eliminated and hence this index was viewed to be soil-removed. As a result, the accuracy and generality of the soil-removed LICI-based model for LCC estimation was evaluated using comprehensive datasets from multiple vegetation types, years, sites, and observation platforms and compared to that of a MatrixVI-based physical model and a MERIS terrestrial chlorophyll index (MTCI)-based semi-empirical model. The root-mean-square error (RMSE) for LCC estimated by the soil-removed LICI-based model was 6.22–6.87 μg/cm2 for the crop datasets and 10.68 μg/cm2 for the multi-ecosystem dataset when the equivalent wet soil fraction was <0.7. Although further efforts are required to mitigate the effects of soil on the LICI-based model over sparse vegetation, this research is highly beneficial for extending its potential applications to the globe and advancing the development of an operational LCC monitoring system in the emerging satellite hyperspectral era.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小米粥完成签到 ,获得积分10
1秒前
CodeCraft应助郭志晟采纳,获得10
1秒前
杳鸢应助2101203142采纳,获得10
2秒前
完美橘子发布了新的文献求助10
2秒前
小马发布了新的文献求助10
2秒前
故意的青枫应助55555采纳,获得10
3秒前
Lucky发布了新的文献求助10
3秒前
伍绮彤发布了新的文献求助10
3秒前
4秒前
4秒前
奥特超曼完成签到,获得积分10
5秒前
5秒前
lytelope发布了新的文献求助10
5秒前
里耐完成签到,获得积分10
6秒前
6秒前
6秒前
无花果应助王哈哈哈哈采纳,获得10
6秒前
7秒前
nannan发布了新的文献求助30
7秒前
Flora发布了新的文献求助10
8秒前
tsttst发布了新的文献求助10
8秒前
奶茶发布了新的文献求助10
9秒前
10秒前
11秒前
青林发布了新的文献求助10
12秒前
奥特超曼发布了新的文献求助200
12秒前
12秒前
SciGPT应助Sunshine采纳,获得30
13秒前
夕瑶摇啊完成签到,获得积分10
14秒前
努力科研完成签到,获得积分10
15秒前
15秒前
ZXR发布了新的文献求助50
15秒前
徐嘻嘻完成签到,获得积分10
15秒前
眼睛大续完成签到,获得积分10
15秒前
惜曦完成签到 ,获得积分10
15秒前
李健的小迷弟应助hucchongzi采纳,获得10
16秒前
莫妮卡卡完成签到,获得积分10
17秒前
Su发布了新的文献求助10
17秒前
小二郎应助科研怪人采纳,获得10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223022
求助须知:如何正确求助?哪些是违规求助? 2871793
关于积分的说明 8177057
捐赠科研通 2538658
什么是DOI,文献DOI怎么找? 1370749
科研通“疑难数据库(出版商)”最低求助积分说明 645870
邀请新用户注册赠送积分活动 619832