A multi-scale cucumber disease detection method in natural scenes based on YOLOv5

稳健性(进化) 计算机科学 人工智能 计算机视觉 计算 数据挖掘 实时计算 模式识别(心理学) 算法 生物化学 化学 基因
作者
Shufei Li,Kaiyu Li,Yan Qiao,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107363-107363 被引量:48
标识
DOI:10.1016/j.compag.2022.107363
摘要

Plant diseases are the main factors affecting the agricultural production. At present, improving the efficiency of plant disease identification in natural scenarios is a crucial issue. Due to this significance, this study aims at providing an efficient detection method, which is applicable to disease detection in natural scenes. The proposed MTC-YOLOv5n method is based on the YOLOv5 model, which integrates the Coordinate Attention (CA) and Transformer in order to reduce invalid information interference in the background, and combines a Multi-scale training strategy (MS) and feature fusion network to improve the small object detection accuracy. MTC-YOLOv5n is trained and validated on a self-built cucumber disease dataset. The model size and FLOPs are respectively 4.7 MB and 6.1 G, achieving 84.9 % mAP and FPS up to 143. Compared with the advanced single-stage detection model, the experimental results show that MTC-YOLOv5n has higher detection accuracy and speed, smaller computation and model size. In addition, the proposed model is tested under the interference of strong noise conditions such as dense fog, drizzle and dark light, which shows that the model has strong robustness. Finally, the comprehensive experimental results demonstrate that MTC-YOLOv5n is lightweight, efficient and suitable for deployment to mobile terminals for disease detection in natural scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
古卡可可完成签到,获得积分10
4秒前
5秒前
Lj应助迟大猫采纳,获得10
5秒前
5秒前
小乔发布了新的文献求助10
6秒前
小雪糕发布了新的文献求助10
7秒前
Dr.Dream完成签到,获得积分10
8秒前
9秒前
slc111完成签到,获得积分10
9秒前
科研爱好者完成签到,获得积分10
10秒前
11秒前
13秒前
寄语明月完成签到,获得积分10
14秒前
哼哼哈嘿发布了新的文献求助10
15秒前
亘古匆匆应助胡图图采纳,获得50
16秒前
liuww0778完成签到,获得积分10
17秒前
今天也要开心Y完成签到,获得积分10
17秒前
bling发布了新的文献求助10
18秒前
圆周率完成签到 ,获得积分10
19秒前
在水一方应助奕初阳采纳,获得10
19秒前
景茶茶完成签到 ,获得积分10
19秒前
19秒前
汉堡包应助小飞鼠采纳,获得10
21秒前
24秒前
25秒前
bling完成签到,获得积分20
26秒前
Akim应助麓麓菌采纳,获得10
26秒前
可爱的函函应助椰子壳采纳,获得10
28秒前
29秒前
lyz完成签到,获得积分10
30秒前
30秒前
31秒前
奕初阳发布了新的文献求助10
32秒前
小飞鼠发布了新的文献求助10
33秒前
33秒前
天蓝色与柠檬黄完成签到,获得积分10
34秒前
tleeny发布了新的文献求助10
35秒前
贝壳发布了新的文献求助10
36秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3703677
求助须知:如何正确求助?哪些是违规求助? 3253381
关于积分的说明 9883555
捐赠科研通 2965370
什么是DOI,文献DOI怎么找? 1626287
邀请新用户注册赠送积分活动 770519
科研通“疑难数据库(出版商)”最低求助积分说明 742970