Trait-based prediction of extinction risk across terrestrial taxa

分类单元 生物 消光(光学矿物学) 生态学 特质 分类等级 无脊椎动物 生物扩散 航程(航空) 人口 人口学 古生物学 复合材料 材料科学 程序设计语言 社会学 计算机科学
作者
Filipe Chichorro,Fernando Urbano-Tenorio,Dinarte Teixeira,Henry Väre,Tiago Pinto,Neil Brummitt,Xiaolan He,Axel Hochkirch,Jaakko Hyvönen,Lauri Kaila,Aino Juslén,Pedro Cardoso
出处
期刊:Biological Conservation [Elsevier]
卷期号:274: 109738-109738 被引量:43
标识
DOI:10.1016/j.biocon.2022.109738
摘要

Species differ in their biological susceptibility to extinction, but the set of traits determining susceptibility varies across taxa. It is yet unclear which patterns are common to all taxa, and which are taxon-specific, with consequences to conservation practice. In this study we analysed the generality of trait-based prediction of extinction risk across terrestrial (including freshwater) vertebrates, invertebrates and plants at a global scale. For each group, we selected five representative taxa and within each group we explored whether risk can be related to any of 10 potential predictors. We then synthesized outcomes across taxa using a meta-analytic approach. High habitat specificity was a consistent predictor across vertebrates, invertebrates and plants, being a universal predictor of risk. Slow life-history traits – large relative offspring size, low fecundity, long generation length –, and narrow altitudinal range were also found to be good predictors across most taxa, but their universality needs to be supported with additional data. Poor dispersal ability was a common predictor of extinction risk among invertebrate and plant taxa, but not consistently among vertebrates. The remaining traits (body size, microhabitat verticality, trophic level, and diet breadth) were useful to predict extinction risk but only at lower taxonomical levels. Our study shows that despite the idiosyncrasies among taxa, universal susceptibility to extinction exists and several traits might influence extinction risk for most taxa. Informing conservation prioritization at lower taxonomic scales should however include taxon-specific trait-based predictors of extinction risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lxr8900发布了新的文献求助10
5秒前
英姑应助空山新雨采纳,获得10
5秒前
wanci应助xx采纳,获得10
6秒前
7秒前
所所应助懵了采纳,获得10
7秒前
今后应助alyssa采纳,获得10
9秒前
乐乐应助归去来兮采纳,获得10
10秒前
淡然夏柳发布了新的文献求助20
10秒前
ZMYI发布了新的文献求助10
11秒前
11秒前
薛十七应助lxr8900采纳,获得10
12秒前
饼饼发布了新的文献求助10
13秒前
hbc发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
端庄的秋翠完成签到,获得积分10
14秒前
深情安青应助lyj采纳,获得10
14秒前
wang完成签到,获得积分20
15秒前
ding应助星星未打烊采纳,获得10
16秒前
18秒前
19秒前
19秒前
21秒前
Yuzu应助一一采纳,获得10
22秒前
ZMYI完成签到,获得积分10
23秒前
23秒前
23秒前
万万陈陈发布了新的文献求助10
24秒前
结实的啤酒完成签到 ,获得积分10
25秒前
宴之思完成签到,获得积分10
26秒前
xiaoer完成签到,获得积分10
26秒前
彭于晏应助wang采纳,获得10
27秒前
27秒前
空山新雨发布了新的文献求助10
28秒前
吴青完成签到,获得积分10
28秒前
领导范儿应助Jamie123采纳,获得10
28秒前
ccbro发布了新的文献求助10
28秒前
小锦李发布了新的文献求助10
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416055
求助须知:如何正确求助?哪些是违规求助? 3017751
关于积分的说明 8882444
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685751
邀请新用户注册赠送积分活动 680771