亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods

生物信息学 人肝 药物发现 机器学习 人工智能 计算生物学 计算机科学 微粒体 理论(学习稳定性) 化学 生物系统 生物化学 生物 体外 基因
作者
Longqiang Li,Lu Zhou,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:35 (9): 1614-1624 被引量:28
标识
DOI:10.1021/acs.chemrestox.2c00207
摘要

Liver microsomal stability is an important property considered for the screening of drug candidates in the early stage of drug development. Determination of hepatic metabolic stability can be performed by an in vitro assay, but it requires quite a few resources and time. In recent years, machine learning methods have made much progress. Therefore, development of computational models to predict liver microsomal stability is highly desirable in the drug discovery process. In this study, the in silico classification models for the prediction of the metabolic stability of compounds in rat and human liver microsomes were constructed by the conventional machine learning and deep learning methods. The performance of the models was evaluated using the test and external sets. For the rat liver microsomes (RLM) stability, the best model yielded the AUC values of 0.84 and 0.71 on the test and external validation sets, respectively. For the human liver microsome (HLM) stability, the best model exhibited the AUC values of 0.86 and 0.77 on the test and external validation sets, respectively. In addition, several important substructure fragments were detected using information gain and frequency substructure analysis methods. The applicability domain of the models was defined using the Euclidean distance-based method. We anticipate that our results would be helpful for the prediction of liver microsomal stability of compounds in the early stage of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助26采纳,获得10
7秒前
8秒前
17秒前
26发布了新的文献求助10
21秒前
27秒前
26完成签到,获得积分10
29秒前
54秒前
YifanWang应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
orixero应助wyx采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
wyx发布了新的文献求助10
3分钟前
3分钟前
fouding发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
桐夜完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Orange应助fouding采纳,获得10
6分钟前
7分钟前
东方元语应助鹏笑采纳,获得20
7分钟前
7分钟前
7分钟前
火星的雪完成签到 ,获得积分0
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455008
求助须知:如何正确求助?哪些是违规求助? 4562247
关于积分的说明 14284991
捐赠科研通 4486147
什么是DOI,文献DOI怎么找? 2457255
邀请新用户注册赠送积分活动 1447868
关于科研通互助平台的介绍 1423094