亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods

生物信息学 人肝 药物发现 机器学习 人工智能 计算生物学 计算机科学 微粒体 理论(学习稳定性) 化学 生物系统 生物化学 生物 体外 基因
作者
Longqiang Li,Lu Zhou,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:35 (9): 1614-1624 被引量:21
标识
DOI:10.1021/acs.chemrestox.2c00207
摘要

Liver microsomal stability is an important property considered for the screening of drug candidates in the early stage of drug development. Determination of hepatic metabolic stability can be performed by an in vitro assay, but it requires quite a few resources and time. In recent years, machine learning methods have made much progress. Therefore, development of computational models to predict liver microsomal stability is highly desirable in the drug discovery process. In this study, the in silico classification models for the prediction of the metabolic stability of compounds in rat and human liver microsomes were constructed by the conventional machine learning and deep learning methods. The performance of the models was evaluated using the test and external sets. For the rat liver microsomes (RLM) stability, the best model yielded the AUC values of 0.84 and 0.71 on the test and external validation sets, respectively. For the human liver microsome (HLM) stability, the best model exhibited the AUC values of 0.86 and 0.77 on the test and external validation sets, respectively. In addition, several important substructure fragments were detected using information gain and frequency substructure analysis methods. The applicability domain of the models was defined using the Euclidean distance-based method. We anticipate that our results would be helpful for the prediction of liver microsomal stability of compounds in the early stage of drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nchudddd发布了新的文献求助10
5秒前
irony完成签到,获得积分10
6秒前
善学以致用应助khan采纳,获得10
9秒前
1111完成签到 ,获得积分10
11秒前
11秒前
Honsarn完成签到,获得积分10
15秒前
文天发布了新的文献求助10
17秒前
隐形曼青应助kento采纳,获得50
18秒前
yh完成签到,获得积分10
19秒前
默默善愁完成签到,获得积分10
25秒前
默默善愁发布了新的文献求助10
29秒前
小丁完成签到 ,获得积分10
29秒前
勤劳的啥也没有完成签到,获得积分20
32秒前
桐桐应助khan采纳,获得10
38秒前
GingerF应助科研通管家采纳,获得50
44秒前
tuanheqi应助科研通管家采纳,获得30
44秒前
GingerF应助科研通管家采纳,获得50
44秒前
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
48秒前
Leeny发布了新的文献求助10
55秒前
佳宝(不可以喝但能吃完成签到,获得积分10
56秒前
56秒前
田様应助khan采纳,获得10
57秒前
1分钟前
Mottri发布了新的文献求助10
1分钟前
沙琪玛完成签到,获得积分10
1分钟前
饼子发布了新的文献求助10
1分钟前
传奇3应助anne采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
ZXR发布了新的文献求助10
1分钟前
kento发布了新的文献求助50
1分钟前
短短急个球完成签到,获得积分10
1分钟前
天天快乐应助bai采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
星辰大海应助khan采纳,获得30
2分钟前
kento发布了新的文献求助50
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186070
求助须知:如何正确求助?哪些是违规求助? 4371387
关于积分的说明 13612107
捐赠科研通 4223732
什么是DOI,文献DOI怎么找? 2316603
邀请新用户注册赠送积分活动 1315223
关于科研通互助平台的介绍 1264252