Cooperative Edge Caching Based on Elastic Federated and Multi-Agent Deep Reinforcement Learning in Next-Generation Networks

计算机科学 强化学习 隐藏物 GSM演进的增强数据速率 自编码 计算机网络 基站 人工智能 深度学习 分布式计算
作者
Qiong Wu,Wenhua Wang,Pingyi Fan,Qiang Fan,Huiling Zhu,Khaled B. Letaief
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 4179-4196 被引量:14
标识
DOI:10.1109/tnsm.2024.3403842
摘要

Edge caching is a promising solution for next-generation networks by empowering caching units in small-cell base stations (SBSs), which allows user equipments (UEs) to fetch users' requested contents that have been pre-cached in SBSs. It is crucial for SBSs to predict accurate popular contents through learning while protecting users' personal information. Traditional federated learning (FL) can protect users' privacy but the data discrepancies among UEs can lead to a degradation in model quality. Therefore, it is necessary to train personalized local models for each UE to predict popular contents accurately. In addition, the cached contents can be shared among adjacent SBSs in next-generation networks, thus caching predicted popular contents in different SBSs may affect the cost to fetch contents. Hence, it is critical to determine where the popular contents are cached cooperatively. To address these issues, we propose a cooperative edge caching scheme based on elastic federated and multi-agent deep reinforcement learning (CEFMR) to optimize the cost in the network. We first propose an elastic FL algorithm to train the personalized model for each UE, where adversarial autoencoder (AAE) model is adopted for training to improve the prediction accuracy, then a popular content prediction algorithm is proposed to predict the popular contents for each SBS based on the trained AAE model. Finally, we propose a multi-agent deep reinforcement learning (MADRL) based algorithm to decide where the predicted popular contents are collaboratively cached among SBSs. Our experimental results demonstrate the superiority of our proposed scheme to existing baseline caching schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ethan完成签到,获得积分10
刚刚
几又完成签到,获得积分10
刚刚
djbj2022发布了新的文献求助10
刚刚
高山我梦完成签到,获得积分10
1秒前
1028181661发布了新的文献求助10
1秒前
1秒前
雪凝清霜发布了新的文献求助10
2秒前
宇文天思完成签到,获得积分10
2秒前
呆呆完成签到,获得积分10
2秒前
大鸭梨完成签到,获得积分10
2秒前
七七完成签到,获得积分10
3秒前
喜之郎完成签到,获得积分10
3秒前
3秒前
开心友儿完成签到,获得积分10
4秒前
lucas完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
全员CEO完成签到,获得积分10
5秒前
Pu Chunyi完成签到,获得积分10
6秒前
山月鹿发布了新的文献求助10
6秒前
7秒前
bzc完成签到,获得积分10
7秒前
勤劳元瑶完成签到,获得积分10
7秒前
缓慢的煎蛋完成签到,获得积分10
8秒前
SciGPT应助熬夜的桃子采纳,获得10
8秒前
奇怪的柒发布了新的文献求助20
9秒前
zhao完成签到 ,获得积分10
9秒前
零点起步完成签到,获得积分10
9秒前
研友_Z33zkZ发布了新的文献求助10
10秒前
两坨小腮红完成签到,获得积分10
10秒前
悲凉的老虎完成签到,获得积分10
11秒前
11秒前
小明同学完成签到,获得积分10
11秒前
微风打了烊完成签到 ,获得积分10
11秒前
Ava应助陶醉紫寒采纳,获得30
11秒前
酷酷的树叶完成签到 ,获得积分10
11秒前
wujiaoqian完成签到,获得积分10
11秒前
小王同学完成签到 ,获得积分10
12秒前
66m37完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716