Speech emotion recognition in real static and dynamic human-robot interaction scenarios

计算机科学 语音识别 混响 机器人 人机交互 背景(考古学) 话筒 语音活动检测 特征(语言学) 波束赋形 语音增强 滤波器(信号处理) 任务(项目管理) 噪音(视频) 语音处理 人工智能 计算机视觉 声学 古生物学 电信 语言学 哲学 物理 管理 声压 经济 图像(数学) 生物
作者
Nicolás Grágeda,Carlos Busso,Eduardo Alvarado,Ricardo García,Rodrigo Mahú,Fernando Huenupán,Néstor Becerra Yoma
出处
期刊:Computer Speech & Language [Elsevier]
卷期号:89: 101666-101666 被引量:1
标识
DOI:10.1016/j.csl.2024.101666
摘要

The use of speech-based solutions is an appealing alternative to communicate in human-robot interaction (HRI). An important challenge in this area is processing distant speech which is often noisy, and affected by reverberation and time-varying acoustic channels. It is important to investigate effective speech solutions, especially in dynamic environments where the robots and the users move, changing the distance and orientation between a speaker and the microphone. This paper addresses this problem in the context of speech emotion recognition (SER), which is an important task to understand the intention of the message and the underlying mental state of the user. We propose a novel setup with a PR2 robot that moves as target speech and ambient noise are simultaneously recorded. Our study not only analyzes the detrimental effect of distance speech in this dynamic robot-user setting for speech emotion recognition but also provides solutions to attenuate its effect. We evaluate the use of two beamforming schemes to spatially filter the speech signal using either delay-and-sum (D&S) or minimum variance distortionless response (MVDR). We consider the original training speech recorded in controlled situations, and simulated conditions where the training utterances are processed to simulate the target acoustic environment. We consider the case where the robot is moving (dynamic case) and not moving (static case). For speech emotion recognition, we explore two state-of-the-art classifiers using hand-crafted features implemented with the ladder network strategy and learned features implemented with the wav2vec 2.0 feature representation. MVDR led to a signal-to-noise ratio higher than the basic D&S method. However, both approaches provided very similar average concordance correlation coefficient (CCC) improvements equal to 116% with the HRI subsets using the ladder network trained with the original MSP-Podcast training utterances. For the wav2vec 2.0-based model, only D&S led to improvements. Surprisingly, the static and dynamic HRI testing subsets resulted in a similar average concordance correlation coefficient. Finally, simulating the acoustic environment in the training dataset provided the highest average concordance correlation coefficient scores with the HRI subsets that are just 29% and 22% lower than those obtained with the original training/testing utterances, with ladder network and wav2vec 2.0, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻代真发布了新的文献求助10
刚刚
mrmrer完成签到,获得积分20
刚刚
刚刚
刚刚
毛慢慢发布了新的文献求助10
1秒前
1秒前
今天不学习明天变垃圾完成签到,获得积分10
1秒前
2秒前
2秒前
布布完成签到,获得积分10
3秒前
一独白发布了新的文献求助10
3秒前
周周完成签到 ,获得积分10
3秒前
淡然完成签到,获得积分10
4秒前
明理小土豆完成签到,获得积分10
4秒前
刘国建郭菱香完成签到,获得积分10
4秒前
嘤嘤嘤完成签到,获得积分10
4秒前
九川应助粱自中采纳,获得10
4秒前
无辜之卉完成签到,获得积分10
5秒前
无花果应助Island采纳,获得10
5秒前
5秒前
SHDeathlock发布了新的文献求助200
6秒前
Owen应助醒醒采纳,获得10
6秒前
无心的代桃完成签到,获得积分10
7秒前
追寻代真完成签到,获得积分10
7秒前
晓兴兴完成签到,获得积分10
7秒前
leon发布了新的文献求助10
8秒前
洽洽瓜子shine完成签到,获得积分10
8秒前
简单的大白菜真实的钥匙完成签到,获得积分10
9秒前
10秒前
一独白完成签到,获得积分10
11秒前
在水一方应助坚强的樱采纳,获得10
11秒前
慕青应助尼亚吉拉采纳,获得10
12秒前
快乐小白菜应助甜酱采纳,获得10
12秒前
12秒前
qq应助毛慢慢采纳,获得10
13秒前
13秒前
科研通AI5应助吴岳采纳,获得10
13秒前
天天快乐应助ufuon采纳,获得10
14秒前
科研通AI5应助一独白采纳,获得10
15秒前
hearts_j完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762