亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning detection of Majorana zero modes from zero-bias peak measurements

虚假关系 马约拉纳 计算机科学 量子 人工智能 分类器(UML) 机器学习 过零点 算法 物理 拓扑(电路) 量子力学 数学 费米子 电压 组合数学
作者
Mouyang Cheng,Ryotaro Okabe,Abhijatmedhi Chotrattanapituk,Mingda Li
出处
期刊:Matter [Elsevier]
卷期号:7 (7): 2507-2520
标识
DOI:10.1016/j.matt.2024.05.028
摘要

Majorana zero modes (MZMs) carry non-Abelian statistics and great promise for topological quantum computation. A key signature of MZMs is the zero-bias peaks (ZBPs) in tunneling differential conductance. However, identifying MZMs from ZBPs has been challenging due to topological trivial states generating spurious signals. In this work, we introduce a machine learning framework that can distinguish MZM from other signals using ZBP data. Quantum transport simulation from tight-binding models is used to generate training data, while persistent cohomology analysis confirms the feasibility of machine-based classification. Even with noisy data, the extreme gradient boosting (XGBoost) classifier reaches 85 % accuracy for 1D data and 94 % for 2D data with Zeeman splitting. Tests on prior experiments show that key observations from some of the prior experiments are more likely to originate from MZMs. Our model offers a quantitative approach to assess MZMs using solely ZBP data. Furthermore, our results highlight the use of machine learning on exotic quantum systems with experimental-computational integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乾坤侠客LW完成签到,获得积分10
4秒前
蓝色的纪念完成签到,获得积分10
4秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
电灯胆完成签到 ,获得积分10
17秒前
HY完成签到 ,获得积分10
22秒前
hhq完成签到 ,获得积分10
27秒前
jjj完成签到 ,获得积分10
43秒前
jjj关注了科研通微信公众号
51秒前
HYH发布了新的文献求助10
55秒前
59秒前
59秒前
xinchi发布了新的文献求助30
1分钟前
小泽发布了新的文献求助10
1分钟前
1分钟前
Owen应助xinchi采纳,获得10
1分钟前
小草发布了新的文献求助10
1分钟前
xinchi完成签到,获得积分10
1分钟前
Jasper应助小泽采纳,获得10
1分钟前
hhhhhh应助annathd采纳,获得10
1分钟前
清飏举报ni求助涉嫌违规
1分钟前
桐桐应助KSung采纳,获得10
2分钟前
2分钟前
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
wy.he应助陶醉的烤鸡采纳,获得10
2分钟前
dlfg完成签到,获得积分10
2分钟前
2分钟前
kd1412完成签到 ,获得积分10
2分钟前
KSung发布了新的文献求助10
2分钟前
华仔应助XX采纳,获得10
2分钟前
清飏举报vivianzzz求助涉嫌违规
2分钟前
2分钟前
XX完成签到,获得积分20
2分钟前
2021完成签到 ,获得积分10
2分钟前
XX发布了新的文献求助10
2分钟前
情怀应助ceeray23采纳,获得20
2分钟前
Elthrai完成签到 ,获得积分10
2分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634707
求助须知:如何正确求助?哪些是违规求助? 4731892
关于积分的说明 14988959
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519820
关于科研通互助平台的介绍 1479929