A bearing fault diagnosis method based on M-SSCNN and M-LR attention mechanism

方位(导航) 断层(地质) Softmax函数 联营 稳健性(进化) 模式识别(心理学) 分割 卷积神经网络 残余物 卷积(计算机科学) 数据挖掘 地质学 计算机科学 人工神经网络 地震学 人工智能 算法 基因 生物化学 化学
作者
Yonghua Li,Zhihui Men,Xiaoning Bai,Qing Xia,Dongxu Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:10
标识
DOI:10.1177/14759217241244477
摘要

Bearing fault diagnosis is vital for mechanical maintenance and fault prediction. It ensures equipment safety, extends lifespan, reduces maintenance costs, and improves production efficiency. Nevertheless, it should be acknowledged that some existing diagnostic methods have achieved high accuracy rates in certain scenarios. However, the challenge lies in their limited generalization capabilities, which can lead to reduced accuracy when applied to diverse or unseen conditions. In this study, we proposed a new bearing fault diagnosis method to address the issue of low accuracy caused by the inadequate generalization of models in the process of rolling bearing fault diagnosis. The method is based on a multi-scale sliding convolution neural network and multi-level residual attention mechanism, the model exhibits high accuracy, strong generalization capability, and lightweight structure. Firstly, the time domain signal of the bearing vibration is converted into a two-dimensional time–frequency map, and the image is pixel-segmented using superpixel segmentation techniques. Next, a multi-scale parallel convolution approach is used to extract features to improve the adaptability and robustness of the model to objects of different sizes and scales. Sliding convolution is used instead of pooling to avoid the problem of feature loss caused by maximum pooling and average pooling. A multi-level attention mechanism is then introduced for all stacked channels to focus on the more important and critical information of the module, and residual connections are added to prevent degradation of the network performance. Finally, the proposed method is passed through the fully connected layer for classification using the Softmax classifier. Experimental verification using public datasets and experimental data of our research group shows that the proposed method has better performance than the existing diagnostic methods and diagnostic models. The proposed method offers an advanced and innovative solution in the domain of bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助椰椰芒芒采纳,获得10
刚刚
yzj发布了新的文献求助10
1秒前
大力的雪碧完成签到,获得积分20
2秒前
3秒前
汉堡包应助远方的大树采纳,获得10
3秒前
阿星捌发布了新的文献求助10
3秒前
4秒前
4秒前
老迟到的冰海完成签到,获得积分10
5秒前
5秒前
Lucas应助ayu采纳,获得10
5秒前
huhu完成签到,获得积分10
5秒前
6秒前
6秒前
妉甛完成签到,获得积分10
7秒前
852应助yjj采纳,获得10
9秒前
顾矜应助霍志美采纳,获得10
9秒前
djyu发布了新的文献求助10
10秒前
10秒前
闻屿完成签到,获得积分10
10秒前
10秒前
科研通AI5应助QQ采纳,获得10
10秒前
10秒前
YuLu发布了新的文献求助10
11秒前
宇文一发布了新的文献求助10
11秒前
xiaoju发布了新的文献求助10
11秒前
贰拾-2完成签到,获得积分10
11秒前
11秒前
FashionBoy应助快乐二方采纳,获得10
12秒前
烟花发布了新的文献求助10
12秒前
善学以致用应助cencen采纳,获得10
13秒前
orixero应助KON采纳,获得10
13秒前
LYY发布了新的文献求助10
14秒前
蓝多多发布了新的文献求助10
14秒前
善学以致用应助追光少年采纳,获得10
14秒前
储祥群完成签到,获得积分10
14秒前
wanci应助jack采纳,获得10
15秒前
星辰大海应助最长的旅途采纳,获得10
15秒前
QQ完成签到,获得积分10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639