A bearing fault diagnosis method based on M-SSCNN and M-LR attention mechanism

方位(导航) 断层(地质) Softmax函数 联营 稳健性(进化) 模式识别(心理学) 分割 卷积神经网络 残余物 卷积(计算机科学) 数据挖掘 地质学 计算机科学 人工神经网络 地震学 人工智能 算法 基因 生物化学 化学
作者
Yonghua Li,Zhihui Men,Xiaoning Bai,Qing Xia,Dongxu Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:10
标识
DOI:10.1177/14759217241244477
摘要

Bearing fault diagnosis is vital for mechanical maintenance and fault prediction. It ensures equipment safety, extends lifespan, reduces maintenance costs, and improves production efficiency. Nevertheless, it should be acknowledged that some existing diagnostic methods have achieved high accuracy rates in certain scenarios. However, the challenge lies in their limited generalization capabilities, which can lead to reduced accuracy when applied to diverse or unseen conditions. In this study, we proposed a new bearing fault diagnosis method to address the issue of low accuracy caused by the inadequate generalization of models in the process of rolling bearing fault diagnosis. The method is based on a multi-scale sliding convolution neural network and multi-level residual attention mechanism, the model exhibits high accuracy, strong generalization capability, and lightweight structure. Firstly, the time domain signal of the bearing vibration is converted into a two-dimensional time–frequency map, and the image is pixel-segmented using superpixel segmentation techniques. Next, a multi-scale parallel convolution approach is used to extract features to improve the adaptability and robustness of the model to objects of different sizes and scales. Sliding convolution is used instead of pooling to avoid the problem of feature loss caused by maximum pooling and average pooling. A multi-level attention mechanism is then introduced for all stacked channels to focus on the more important and critical information of the module, and residual connections are added to prevent degradation of the network performance. Finally, the proposed method is passed through the fully connected layer for classification using the Softmax classifier. Experimental verification using public datasets and experimental data of our research group shows that the proposed method has better performance than the existing diagnostic methods and diagnostic models. The proposed method offers an advanced and innovative solution in the domain of bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助xr采纳,获得10
1秒前
花火发布了新的文献求助10
1秒前
1秒前
Orange应助yyryyrr采纳,获得10
2秒前
舒适飞薇完成签到,获得积分10
2秒前
2秒前
lee完成签到,获得积分10
3秒前
3秒前
JamesPei应助乐观的海采纳,获得10
3秒前
英俊的铭应助WoeL.Aug.11采纳,获得10
4秒前
4秒前
4秒前
4秒前
元问晴发布了新的文献求助10
5秒前
欢喜的皮卡丘完成签到,获得积分10
5秒前
5秒前
阿福完成签到,获得积分20
5秒前
5秒前
5秒前
Owen应助坦率惊蛰采纳,获得10
5秒前
无脚鸟完成签到,获得积分10
6秒前
自觉博超发布了新的文献求助10
6秒前
拍肩大帝陈灵均完成签到 ,获得积分10
6秒前
Sissimummy完成签到,获得积分10
7秒前
8秒前
8秒前
从容问雁完成签到,获得积分10
8秒前
阿福发布了新的文献求助10
8秒前
开朗道天完成签到 ,获得积分10
8秒前
8秒前
猫绒球发布了新的文献求助10
8秒前
长孙曼香完成签到,获得积分10
9秒前
万能图书馆应助嘟嘟采纳,获得10
9秒前
无脚鸟发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
10秒前
10秒前
10秒前
吕佳给吕佳的求助进行了留言
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879