亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A bearing fault diagnosis method based on M-SSCNN and M-LR attention mechanism

方位(导航) 断层(地质) Softmax函数 联营 稳健性(进化) 模式识别(心理学) 分割 卷积神经网络 残余物 卷积(计算机科学) 数据挖掘 地质学 计算机科学 人工神经网络 地震学 人工智能 算法 生物化学 化学 基因
作者
Yonghua Li,Zhihui Men,Xiaoning Bai,Qing Xia,Dongxu Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241244477
摘要

Bearing fault diagnosis is vital for mechanical maintenance and fault prediction. It ensures equipment safety, extends lifespan, reduces maintenance costs, and improves production efficiency. Nevertheless, it should be acknowledged that some existing diagnostic methods have achieved high accuracy rates in certain scenarios. However, the challenge lies in their limited generalization capabilities, which can lead to reduced accuracy when applied to diverse or unseen conditions. In this study, we proposed a new bearing fault diagnosis method to address the issue of low accuracy caused by the inadequate generalization of models in the process of rolling bearing fault diagnosis. The method is based on a multi-scale sliding convolution neural network and multi-level residual attention mechanism, the model exhibits high accuracy, strong generalization capability, and lightweight structure. Firstly, the time domain signal of the bearing vibration is converted into a two-dimensional time–frequency map, and the image is pixel-segmented using superpixel segmentation techniques. Next, a multi-scale parallel convolution approach is used to extract features to improve the adaptability and robustness of the model to objects of different sizes and scales. Sliding convolution is used instead of pooling to avoid the problem of feature loss caused by maximum pooling and average pooling. A multi-level attention mechanism is then introduced for all stacked channels to focus on the more important and critical information of the module, and residual connections are added to prevent degradation of the network performance. Finally, the proposed method is passed through the fully connected layer for classification using the Softmax classifier. Experimental verification using public datasets and experimental data of our research group shows that the proposed method has better performance than the existing diagnostic methods and diagnostic models. The proposed method offers an advanced and innovative solution in the domain of bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
david完成签到,获得积分10
3秒前
9秒前
老王爱学习完成签到,获得积分10
10秒前
布灵完成签到,获得积分20
15秒前
华仔应助时尚的飞机采纳,获得10
20秒前
666完成签到 ,获得积分10
21秒前
23秒前
25秒前
fang发布了新的文献求助10
27秒前
atdawn1998发布了新的文献求助10
30秒前
wuhan发布了新的文献求助10
30秒前
信封完成签到 ,获得积分10
43秒前
48秒前
无花果应助atdawn1998采纳,获得10
49秒前
Frank应助子桑南采纳,获得300
53秒前
_ban发布了新的文献求助10
53秒前
二牛发布了新的文献求助10
58秒前
1分钟前
yueyangyin完成签到,获得积分10
1分钟前
atdawn1998发布了新的文献求助10
1分钟前
1分钟前
1分钟前
atdawn1998完成签到,获得积分10
1分钟前
Easypass完成签到 ,获得积分10
2分钟前
刘天宇完成签到 ,获得积分10
2分钟前
芒芒发布了新的文献求助10
2分钟前
2分钟前
2分钟前
轩辕山槐发布了新的文献求助10
2分钟前
2分钟前
二牛发布了新的文献求助10
2分钟前
领导范儿应助自由的傲儿采纳,获得30
2分钟前
团团团完成签到 ,获得积分10
2分钟前
Owen应助大可奇采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
3分钟前
共享精神应助李鱼丸采纳,获得10
3分钟前
大可奇完成签到,获得积分10
3分钟前
大可奇发布了新的文献求助10
3分钟前
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142637
求助须知:如何正确求助?哪些是违规求助? 2793544
关于积分的说明 7806846
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314