MRD‐GAN: Multi‐representation discrimination GAN for enhancing the diversity of the generated data

多样性(政治) 代表(政治) 计算机科学 数学 模式识别(心理学) 人工智能 政治学 政治 法学
作者
Mohammed Megahed,Ammar Mohammed
出处
期刊:Computational Intelligence [Wiley]
卷期号:40 (3)
标识
DOI:10.1111/coin.12685
摘要

Abstract The generative adversarial network (GAN) is a highly effective member of the generative models category and is extensively employed for generating realistic samples across various domains. The fundamental concept behind GAN involves two networks, a generator and a discriminator, competing against each other. During the training process, generator and discriminator networks encounter several issues that can potentially affect the quality and diversity of the generated samples. One such critical issue is mode collapse, where the generator fails to create varied samples. To tackle this issue, this article introduces a GAN approach called the multi‐representation discrimination GAN (MRD‐GAN). In this approach, the discriminator supports concurrent network discrimination flows to manage different representations of the data through various transformation functions, such as dimension rescaling, brightness adjustment, and gamma correction applied to the input data of the discriminator. We use a fusion function to aggregate the output of all flows and return a consolidated loss value to update the generator's weights. Hence, the discriminator conveys diverse feedback to the generator. The proposed approach has been evaluated on four distinct benchmarks, namely CelebA, Cifar‐10, Fashion‐Mnist, and Mnist. The experimental results demonstrate that the proposed approach surpasses the existing state‐of‐the‐art GAN models in terms of FID metric that measures the diversity of the generated samples. Significantly, the proposed approach demonstrates remarkable FID scores of 14.02, 30.19, 9.42, and 3.14 on the CelebA, Cifar‐10, Fashion‐Mnist, and Mnist datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助xx采纳,获得10
1秒前
研友_VZG7GZ应助billevans采纳,获得30
1秒前
代代子完成签到,获得积分20
1秒前
1秒前
脑洞疼应助雪白的翠梅采纳,获得10
2秒前
2秒前
lili完成签到,获得积分20
2秒前
linzhuo完成签到,获得积分10
3秒前
善良的翼完成签到 ,获得积分10
3秒前
NexusExplorer应助不如吃茶去采纳,获得10
4秒前
玖水发布了新的文献求助10
4秒前
怪叔叔发布了新的文献求助10
5秒前
阿三完成签到 ,获得积分10
6秒前
时尚颦完成签到,获得积分10
6秒前
Maribo完成签到,获得积分10
7秒前
高大的怀绿关注了科研通微信公众号
7秒前
震南发布了新的文献求助10
7秒前
科研3c完成签到,获得积分10
7秒前
Lee完成签到,获得积分10
7秒前
8秒前
自然刺猬完成签到,获得积分10
9秒前
kk完成签到,获得积分10
9秒前
ohh应助1Q84采纳,获得10
10秒前
苏桑焉完成签到,获得积分10
10秒前
安静无招发布了新的文献求助10
11秒前
汉堡包应助火星上的秋天采纳,获得10
11秒前
qyh完成签到,获得积分10
12秒前
12秒前
Wendy完成签到,获得积分10
12秒前
小二郎应助粥粥sqk采纳,获得10
12秒前
晓爽完成签到,获得积分10
13秒前
lily完成签到,获得积分10
13秒前
科研通AI2S应助炸炸呦采纳,获得10
14秒前
金扇扇完成签到 ,获得积分10
14秒前
Akim应助多多采纳,获得10
15秒前
诸葛烤鸭完成签到,获得积分10
15秒前
15秒前
Lazzaro完成签到,获得积分10
16秒前
夏茉发布了新的文献求助10
17秒前
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167605
求助须知:如何正确求助?哪些是违规求助? 2819067
关于积分的说明 7924710
捐赠科研通 2478949
什么是DOI,文献DOI怎么找? 1320553
科研通“疑难数据库(出版商)”最低求助积分说明 632821
版权声明 602443