MRD‐GAN: Multi‐representation discrimination GAN for enhancing the diversity of the generated data

多样性(政治) 代表(政治) 计算机科学 数学 模式识别(心理学) 人工智能 政治学 政治 法学
作者
Mohammed Megahed,Ammar Mohammed
出处
期刊:Computational Intelligence [Wiley]
卷期号:40 (3)
标识
DOI:10.1111/coin.12685
摘要

Abstract The generative adversarial network (GAN) is a highly effective member of the generative models category and is extensively employed for generating realistic samples across various domains. The fundamental concept behind GAN involves two networks, a generator and a discriminator, competing against each other. During the training process, generator and discriminator networks encounter several issues that can potentially affect the quality and diversity of the generated samples. One such critical issue is mode collapse, where the generator fails to create varied samples. To tackle this issue, this article introduces a GAN approach called the multi‐representation discrimination GAN (MRD‐GAN). In this approach, the discriminator supports concurrent network discrimination flows to manage different representations of the data through various transformation functions, such as dimension rescaling, brightness adjustment, and gamma correction applied to the input data of the discriminator. We use a fusion function to aggregate the output of all flows and return a consolidated loss value to update the generator's weights. Hence, the discriminator conveys diverse feedback to the generator. The proposed approach has been evaluated on four distinct benchmarks, namely CelebA, Cifar‐10, Fashion‐Mnist, and Mnist. The experimental results demonstrate that the proposed approach surpasses the existing state‐of‐the‐art GAN models in terms of FID metric that measures the diversity of the generated samples. Significantly, the proposed approach demonstrates remarkable FID scores of 14.02, 30.19, 9.42, and 3.14 on the CelebA, Cifar‐10, Fashion‐Mnist, and Mnist datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助英吉利25采纳,获得10
2秒前
Kenzonvay发布了新的文献求助10
3秒前
Luna完成签到 ,获得积分10
5秒前
汉堡包应助chenzhi采纳,获得10
8秒前
充电宝应助dd99081采纳,获得10
9秒前
9秒前
花花完成签到 ,获得积分10
11秒前
11秒前
老谢发布了新的文献求助10
12秒前
check003完成签到,获得积分10
12秒前
fortune完成签到,获得积分10
13秒前
彳亍完成签到,获得积分10
15秒前
16秒前
18秒前
Lin完成签到,获得积分10
19秒前
19秒前
斯文败类应助乐观鑫鹏采纳,获得10
21秒前
浮游应助LHP采纳,获得10
22秒前
Lulul发布了新的文献求助10
23秒前
bai完成签到,获得积分10
23秒前
十一玮发布了新的文献求助10
24秒前
xdmhv完成签到,获得积分10
28秒前
29秒前
Akim应助Tian采纳,获得10
31秒前
水水的完成签到 ,获得积分10
33秒前
球球尧伞耳完成签到,获得积分10
36秒前
John完成签到,获得积分10
37秒前
39秒前
酷波er应助纯真猕猴桃采纳,获得10
39秒前
40秒前
didi发布了新的文献求助10
40秒前
万能图书馆应助qianqina采纳,获得30
40秒前
暮烟应助Lulul采纳,获得10
40秒前
虚幻的冬瓜完成签到 ,获得积分10
43秒前
小翼发布了新的文献求助10
45秒前
47秒前
50秒前
glay发布了新的文献求助10
54秒前
想睡觉的小笼包完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969