A auto-segmented multi-time window dual-scale neural network for brain-computer interfaces based on event-related potentials

计算机科学 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 脑电图 人工智能 窗口(计算) 脑-机接口 人工神经网络 集合(抽象数据类型) 心理学 操作系统 精神科 程序设计语言
作者
Xueqing Zhao,Ren Xu,Ruitian Xu,Xingyu Wang,Andrzej Cichocki,Jing Jin
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046008-046008
标识
DOI:10.1088/1741-2552/ad558a
摘要

Abstract Objective. Event-related potentials (ERPs) are cerebral responses to cognitive processes, also referred to as cognitive potentials. Accurately decoding ERPs can help to advance research on brain-computer interfaces (BCIs). The spatial pattern of ERP varies with time. In recent years, convolutional neural networks (CNNs) have shown promising results in electroencephalography (EEG) classification, specifically for ERP-based BCIs. Approach. This study proposes an auto-segmented multi-time window dual-scale neural network (AWDSNet). The combination of a multi-window design and a lightweight base network gives AWDSNet good performance at an acceptable cost of computing. For each individual, we create a time window set by calculating the correlation of signed R -squared values, which enables us to determine the length and number of windows automatically. The signal data are segmented based on the obtained window sets in sub-plus-global mode. Then, the multi-window data are fed into a dual-scale CNN model, where the sizes of the convolution kernels are determined by the window sizes. The use of dual-scale spatiotemporal convolution focuses on feature details while also having a large enough receptive length, and the grouping parallelism undermines the increase in the number of parameters that come with dual scaling. Main results. We evaluated the performance of AWDSNet on a public dataset and a self-collected dataset. A comparison was made with four popular methods including EEGNet, DeepConvNet, EEG-Inception, and PPNN. The experimental results show that AWDSNet has excellent classification performance with acceptable computational complexity. Significance. These results indicate that AWDSNet has great potential for applications in ERP decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beautieat1完成签到,获得积分10
4秒前
4秒前
8秒前
朱朱朱完成签到,获得积分10
8秒前
贰鸟应助吴兰田采纳,获得20
10秒前
sjk发布了新的文献求助10
10秒前
幸福大白完成签到,获得积分10
11秒前
虽动烟火完成签到,获得积分10
12秒前
拼搏菲鹰完成签到,获得积分10
12秒前
juans完成签到,获得积分10
13秒前
robi发布了新的文献求助10
13秒前
保亮完成签到,获得积分10
14秒前
sjk完成签到,获得积分10
16秒前
16秒前
17秒前
完美世界应助zz采纳,获得10
18秒前
s654231完成签到,获得积分10
19秒前
19秒前
云无意发布了新的文献求助10
20秒前
闪闪的白易完成签到,获得积分20
21秒前
24秒前
MET1完成签到,获得积分10
25秒前
juans发布了新的文献求助10
25秒前
大地完成签到,获得积分10
27秒前
务实的苠完成签到 ,获得积分10
28秒前
zz发布了新的文献求助10
30秒前
完美世界应助heavyD采纳,获得10
33秒前
35秒前
鱼鱼鱼完成签到,获得积分10
35秒前
淡然平蓝完成签到 ,获得积分10
37秒前
37秒前
38秒前
尉迟绮山完成签到,获得积分10
39秒前
月月完成签到,获得积分10
39秒前
Clover04应助jazzmantan采纳,获得10
40秒前
40秒前
pp发布了新的文献求助10
42秒前
刻苦小鸭子完成签到,获得积分10
43秒前
43秒前
长长的衣服完成签到 ,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825