A auto-segmented multi-time window dual-scale neural network for brain-computer interfaces based on event-related potentials

计算机科学 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 脑电图 人工智能 窗口(计算) 脑-机接口 人工神经网络 集合(抽象数据类型) 心理学 操作系统 精神科 程序设计语言
作者
Xueqing Zhao,Ren Xu,Ruitian Xu,Xingyu Wang,Andrzej Cichocki,Jing Jin
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046008-046008
标识
DOI:10.1088/1741-2552/ad558a
摘要

Abstract Objective. Event-related potentials (ERPs) are cerebral responses to cognitive processes, also referred to as cognitive potentials. Accurately decoding ERPs can help to advance research on brain-computer interfaces (BCIs). The spatial pattern of ERP varies with time. In recent years, convolutional neural networks (CNNs) have shown promising results in electroencephalography (EEG) classification, specifically for ERP-based BCIs. Approach. This study proposes an auto-segmented multi-time window dual-scale neural network (AWDSNet). The combination of a multi-window design and a lightweight base network gives AWDSNet good performance at an acceptable cost of computing. For each individual, we create a time window set by calculating the correlation of signed R -squared values, which enables us to determine the length and number of windows automatically. The signal data are segmented based on the obtained window sets in sub-plus-global mode. Then, the multi-window data are fed into a dual-scale CNN model, where the sizes of the convolution kernels are determined by the window sizes. The use of dual-scale spatiotemporal convolution focuses on feature details while also having a large enough receptive length, and the grouping parallelism undermines the increase in the number of parameters that come with dual scaling. Main results. We evaluated the performance of AWDSNet on a public dataset and a self-collected dataset. A comparison was made with four popular methods including EEGNet, DeepConvNet, EEG-Inception, and PPNN. The experimental results show that AWDSNet has excellent classification performance with acceptable computational complexity. Significance. These results indicate that AWDSNet has great potential for applications in ERP decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木应助魁梧的向薇采纳,获得10
5秒前
ding应助寒冷的咖啡采纳,获得10
5秒前
阿钉完成签到,获得积分10
7秒前
11秒前
研友_VZG7GZ应助刘浩营采纳,获得10
11秒前
12秒前
传奇3应助@@@采纳,获得10
12秒前
15秒前
flameWei发布了新的文献求助10
15秒前
18秒前
科研通AI2S应助水流众生采纳,获得10
18秒前
22秒前
22秒前
22秒前
慕青应助平常的元蝶采纳,获得10
28秒前
善学以致用应助Skuld采纳,获得10
28秒前
chrainy发布了新的文献求助10
28秒前
CyrusSo524应助黎乐荷采纳,获得10
28秒前
刘浩营发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
生姜完成签到,获得积分10
32秒前
33秒前
34秒前
zhaozhaozhao发布了新的文献求助10
35秒前
35秒前
35秒前
35秒前
flameWei关注了科研通微信公众号
36秒前
chrainy完成签到,获得积分10
36秒前
Bio应助科研通管家采纳,获得30
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
czh应助科研通管家采纳,获得10
36秒前
慕青应助科研通管家采纳,获得10
36秒前
36秒前
田様应助科研通管家采纳,获得10
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068