计算机科学
模式识别(心理学)
卷积神经网络
卷积(计算机科学)
脑电图
人工智能
窗口(计算)
脑-机接口
人工神经网络
集合(抽象数据类型)
心理学
操作系统
精神科
程序设计语言
作者
Xueqing Zhao,Ren Xu,Ruitian Xu,Xingyu Wang,Andrzej Cichocki,Jing Jin
出处
期刊:Journal of Neural Engineering
[IOP Publishing]
日期:2024-07-05
卷期号:21 (4): 046008-046008
标识
DOI:10.1088/1741-2552/ad558a
摘要
Abstract Objective. Event-related potentials (ERPs) are cerebral responses to cognitive processes, also referred to as cognitive potentials. Accurately decoding ERPs can help to advance research on brain-computer interfaces (BCIs). The spatial pattern of ERP varies with time. In recent years, convolutional neural networks (CNNs) have shown promising results in electroencephalography (EEG) classification, specifically for ERP-based BCIs. Approach. This study proposes an auto-segmented multi-time window dual-scale neural network (AWDSNet). The combination of a multi-window design and a lightweight base network gives AWDSNet good performance at an acceptable cost of computing. For each individual, we create a time window set by calculating the correlation of signed R -squared values, which enables us to determine the length and number of windows automatically. The signal data are segmented based on the obtained window sets in sub-plus-global mode. Then, the multi-window data are fed into a dual-scale CNN model, where the sizes of the convolution kernels are determined by the window sizes. The use of dual-scale spatiotemporal convolution focuses on feature details while also having a large enough receptive length, and the grouping parallelism undermines the increase in the number of parameters that come with dual scaling. Main results. We evaluated the performance of AWDSNet on a public dataset and a self-collected dataset. A comparison was made with four popular methods including EEGNet, DeepConvNet, EEG-Inception, and PPNN. The experimental results show that AWDSNet has excellent classification performance with acceptable computational complexity. Significance. These results indicate that AWDSNet has great potential for applications in ERP decoding.
科研通智能强力驱动
Strongly Powered by AbleSci AI