亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A auto-segmented multi-time window dual-scale neural network for brain-computer interfaces based on event-related potentials

计算机科学 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 脑电图 人工智能 窗口(计算) 脑-机接口 人工神经网络 集合(抽象数据类型) 心理学 操作系统 精神科 程序设计语言
作者
Xueqing Zhao,Ren Xu,Ruitian Xu,Xingyu Wang,Andrzej Cichocki,Jing Jin
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046008-046008
标识
DOI:10.1088/1741-2552/ad558a
摘要

Abstract Objective. Event-related potentials (ERPs) are cerebral responses to cognitive processes, also referred to as cognitive potentials. Accurately decoding ERPs can help to advance research on brain-computer interfaces (BCIs). The spatial pattern of ERP varies with time. In recent years, convolutional neural networks (CNNs) have shown promising results in electroencephalography (EEG) classification, specifically for ERP-based BCIs. Approach. This study proposes an auto-segmented multi-time window dual-scale neural network (AWDSNet). The combination of a multi-window design and a lightweight base network gives AWDSNet good performance at an acceptable cost of computing. For each individual, we create a time window set by calculating the correlation of signed R -squared values, which enables us to determine the length and number of windows automatically. The signal data are segmented based on the obtained window sets in sub-plus-global mode. Then, the multi-window data are fed into a dual-scale CNN model, where the sizes of the convolution kernels are determined by the window sizes. The use of dual-scale spatiotemporal convolution focuses on feature details while also having a large enough receptive length, and the grouping parallelism undermines the increase in the number of parameters that come with dual scaling. Main results. We evaluated the performance of AWDSNet on a public dataset and a self-collected dataset. A comparison was made with four popular methods including EEGNet, DeepConvNet, EEG-Inception, and PPNN. The experimental results show that AWDSNet has excellent classification performance with acceptable computational complexity. Significance. These results indicate that AWDSNet has great potential for applications in ERP decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪歪yyyyc完成签到,获得积分10
2秒前
Feng完成签到,获得积分10
4秒前
尹静涵完成签到 ,获得积分10
5秒前
5秒前
学术垃圾关注了科研通微信公众号
9秒前
dawn发布了新的文献求助10
10秒前
文艺沉鱼完成签到 ,获得积分10
10秒前
11秒前
14秒前
学术垃圾发布了新的文献求助10
18秒前
一鸣发布了新的文献求助10
19秒前
迷路的八宝粥完成签到,获得积分10
22秒前
yuanyang完成签到,获得积分10
24秒前
26秒前
休眠补正完成签到,获得积分10
27秒前
27秒前
樱木灰发布了新的文献求助10
27秒前
寄托完成签到 ,获得积分10
29秒前
长情的语风完成签到 ,获得积分10
29秒前
愉快河马发布了新的文献求助10
32秒前
33秒前
万能图书馆应助dawn采纳,获得10
34秒前
樱木灰完成签到,获得积分10
34秒前
34秒前
Feng发布了新的文献求助10
36秒前
魁梧的衫完成签到 ,获得积分10
37秒前
长孙兰溪完成签到,获得积分10
38秒前
水水的发布了新的文献求助10
39秒前
40秒前
吉祥高趙完成签到 ,获得积分10
44秒前
求文献发布了新的文献求助10
44秒前
44秒前
邢文瑞发布了新的文献求助20
44秒前
yuanyang发布了新的文献求助10
47秒前
小禾完成签到 ,获得积分10
48秒前
在水一方应助求文献采纳,获得10
51秒前
wtian完成签到,获得积分10
52秒前
52秒前
54秒前
成就人杰完成签到 ,获得积分20
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063508
求助须知:如何正确求助?哪些是违规求助? 4287059
关于积分的说明 13358331
捐赠科研通 4105075
什么是DOI,文献DOI怎么找? 2247845
邀请新用户注册赠送积分活动 1253402
关于科研通互助平台的介绍 1184427