清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Trajectory prediction method for agricultural tracked robots based on slip parameter estimation

弹道 机器人 打滑(空气动力学) 计算机科学 人工智能 估计理论 模拟 工程类 计算机视觉 算法 航空航天工程 物理 天文
作者
Xin Zhao,En Lu,Zhong Tang,Chengming Luo,Lizhang Xu,Hui Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:222: 109057-109057 被引量:3
标识
DOI:10.1016/j.compag.2024.109057
摘要

The trajectory prediction of tracked robots is the foundation and prerequisite for trajectory tracking and autonomous precise navigation. The kinematic model of the agricultural tracked robot considering the slips (slippages and slip-rotation) between the tracks and the soil is established by analyzing the slip and turning characteristics. The extended Kalman filter (EKF) method and the improved sliding mode observer (ISMO) method are respectively used to estimate the slip parameters of the agricultural tracked robot during the driving process. Subsequently, the driving trajectory of the agricultural tracked robot is predicted for a future time period, in combination with the provided control sequence. Finally, simulation and experimental results show that the proposed trajectory prediction method for agricultural tracked robots, which integrates slip parameter estimation, significantly reduces trajectory prediction errors. Moreover, the proposed ISMO method outperforms the traditional EKF method in terms of slip parameter estimation and driving trajectory prediction. The research in this paper provides theoretical guidance for trajectory planning and tracking control of agricultural tracked robots, and has broad application prospects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
hu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
hu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大雁完成签到 ,获得积分0
2分钟前
老老熊完成签到,获得积分10
2分钟前
Una完成签到,获得积分10
2分钟前
合作完成签到 ,获得积分10
2分钟前
欣欣完成签到,获得积分10
2分钟前
一天完成签到 ,获得积分10
2分钟前
甜甜的静柏完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
奶奶的龙应助科研通管家采纳,获得30
3分钟前
sujingbo完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
你好完成签到 ,获得积分10
4分钟前
4分钟前
结实的寒梦完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
尚青华完成签到 ,获得积分10
4分钟前
4分钟前
123发布了新的文献求助80
4分钟前
5分钟前
mark完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016