Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning

可解释性 机器学习 人工智能 二进制数 计算机科学 理论(学习稳定性) 熔点 特征(语言学) 无监督学习 材料科学 数学 语言学 算术 哲学 复合材料
作者
Vahe Gharakhanyan,Luke J. Wirth,José Antonio Garrido Torres,Ethan Eisenberg,Ting Wang,Dallas R. Trinkle,Snigdhansu Chatterjee,Alexander Urban
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (20) 被引量:6
标识
DOI:10.1063/5.0207033
摘要

The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助暖吱采纳,获得20
5秒前
受伤的平安完成签到,获得积分10
6秒前
ZeKaWa应助linlin采纳,获得10
8秒前
16秒前
20秒前
tianya完成签到,获得积分10
21秒前
22秒前
烟花应助标致的妙晴采纳,获得10
23秒前
浮游应助朴素的松采纳,获得10
25秒前
25秒前
26秒前
加百莉发布了新的文献求助10
27秒前
cancan发布了新的文献求助10
28秒前
伯言发布了新的文献求助10
33秒前
元谷雪应助陈帅采纳,获得10
34秒前
初雪完成签到,获得积分10
35秒前
花花花花完成签到 ,获得积分10
40秒前
42秒前
43秒前
肉肉完成签到 ,获得积分10
43秒前
cancan完成签到,获得积分10
44秒前
zhuangbaobao发布了新的文献求助10
47秒前
郭6666发布了新的文献求助10
48秒前
完美世界应助留胡子的火采纳,获得10
53秒前
脑洞疼应助郭6666采纳,获得10
53秒前
公冶愚志完成签到,获得积分10
56秒前
威武的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大龙哥886应助ri_290采纳,获得10
1分钟前
sevenhill应助Devastating采纳,获得10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得30
1分钟前
拼搏应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555