可解释性
机器学习
人工智能
二进制数
计算机科学
理论(学习稳定性)
熔点
特征(语言学)
无监督学习
材料科学
数学
语言学
哲学
算术
复合材料
作者
Vahe Gharakhanyan,Luke J. Wirth,José Antonio Garrido Torres,Ethan Eisenberg,Ting Wang,Dallas R. Trinkle,Snigdhansu Chatterjee,Alexander Urban
摘要
The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability.
科研通智能强力驱动
Strongly Powered by AbleSci AI