Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning

可解释性 机器学习 人工智能 二进制数 计算机科学 理论(学习稳定性) 熔点 特征(语言学) 无监督学习 材料科学 数学 语言学 算术 哲学 复合材料
作者
Vahe Gharakhanyan,Luke J. Wirth,José Antonio Garrido Torres,Ethan Eisenberg,Ting Wang,Dallas R. Trinkle,Snigdhansu Chatterjee,Alexander Urban
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (20) 被引量:6
标识
DOI:10.1063/5.0207033
摘要

The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助詹妮采纳,获得10
刚刚
无奈凉面发布了新的文献求助10
1秒前
2秒前
Zenghaw发布了新的文献求助10
2秒前
3秒前
5秒前
终成发布了新的文献求助50
6秒前
小余同学发布了新的文献求助10
6秒前
lalala完成签到,获得积分10
7秒前
7秒前
小青椒应助FIN采纳,获得50
8秒前
9秒前
qian完成签到 ,获得积分10
9秒前
11秒前
12秒前
13秒前
foxuan完成签到,获得积分10
16秒前
临河盗龙发布了新的文献求助10
16秒前
17秒前
自觉紫安完成签到,获得积分10
17秒前
19秒前
不吃香菜发布了新的文献求助10
19秒前
考博圣体完成签到,获得积分10
20秒前
白云苍狗发布了新的文献求助10
22秒前
笨笨的元风完成签到 ,获得积分10
23秒前
24秒前
25秒前
26秒前
凌奕添完成签到 ,获得积分10
27秒前
考博圣体发布了新的文献求助10
27秒前
28秒前
pyb完成签到 ,获得积分10
29秒前
29秒前
Jasper应助Zenghaw采纳,获得10
29秒前
酷波er应助哎哟可爱采纳,获得10
31秒前
31秒前
31秒前
生动依凝发布了新的文献求助10
31秒前
31秒前
善学以致用应助追寻电脑采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548