Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning

可解释性 机器学习 人工智能 二进制数 计算机科学 理论(学习稳定性) 熔点 特征(语言学) 无监督学习 材料科学 数学 语言学 算术 哲学 复合材料
作者
Vahe Gharakhanyan,Luke J. Wirth,José Antonio Garrido Torres,Ethan Eisenberg,Ting Wang,Dallas R. Trinkle,Snigdhansu Chatterjee,Alexander Urban
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (20) 被引量:4
标识
DOI:10.1063/5.0207033
摘要

The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lyx采纳,获得10
刚刚
Zoe013发布了新的文献求助10
1秒前
企鹅完成签到,获得积分20
2秒前
2秒前
2秒前
天神发布了新的文献求助10
3秒前
3秒前
naturehome完成签到,获得积分10
3秒前
4秒前
顺利滑板发布了新的文献求助10
4秒前
7秒前
8秒前
小蓝发布了新的文献求助10
8秒前
科研通AI5应助allen7u采纳,获得10
8秒前
完美世界应助单薄二娘采纳,获得10
8秒前
冯俊驰发布了新的文献求助10
8秒前
8秒前
李健应助zhangjianan采纳,获得10
8秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
乐乐应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
wswswsws应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
周鑫喆完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
加菲丰丰应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
大模型应助yeandpeng采纳,获得10
12秒前
赘婿应助小超采纳,获得10
13秒前
oooiilikk发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408