Detection of the irrotational boundary using machine learning methods

物理 涡度 保守向量场 湍流 人工智能 算法 数学分析 涡流 机械 计算机科学 数学 压缩性
作者
Shancong Tao,Yuanliang Xie,Xiaotian Shi,Yi Zhou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7)
标识
DOI:10.1063/5.0214605
摘要

Four machine learning methods, i.e., self-organizing map (SOM), Gaussian mixture model (GMM), eXtreme gradient boosting (XGBoost), and contrastive learning (CL), are used to detect the irrotational boundary (IB), which represents the outer edge of the turbulent and non-turbulent interface layer. To accurately evaluate the detection methods, high-resolution databases from direct numerical simulations of a temporally evolving turbulent plane jet are used. It is found that except for the SOM method, the general contour of the IB appears to be effectively captured using the GMM, XGBoost, and CL methods, which indicate the turbulent and non-turbulent regions can be roughly recognized. Furthermore, the intrinsic features of the detected IB using the GMM, XGBoost, and the CL methods are quantitatively evaluated. Unlike the conventional vorticity norm method, the three machine learning methods do not rely on a single threshold of vorticity magnitude to separate the turbulent and non-turbulent regions. A small part of the detected IB using the three machine learning methods is characterized by the rotational motions, which are expected to be only found inside the turbulent sublayer and turbulent core region. Compared to the vorticity norm and XGBoost methods, the fractal dimensions of the IB detected by the GMM and CL methods are relatively small, which are related to the missing detection of some highly contorted elements. With the three machine learning methods, a large part of the detected IB is characterized by a convex shape, similarly as with the vorticity norm. However, the probability density function profiles of the local curvature of the detected IB differ greatly between the three machine learning methods and the vorticity norm. A mild variation of the mean conditional distributions of the vorticity magnitude can be observed across the detected IB by the three machine learning methods. This study first implies that using the machine learning methods the turbulent and non-turbulent regions can be roughly distinguished, but it is still challenging to obtain the intrinsic features of the detected IB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangfeidong发布了新的文献求助10
1秒前
2秒前
ling22发布了新的文献求助30
2秒前
叮叮发布了新的文献求助10
3秒前
3秒前
黑暗的圣堂完成签到,获得积分10
4秒前
4秒前
hob发布了新的文献求助10
4秒前
不能说的秘密完成签到,获得积分10
4秒前
5秒前
proteinpurify发布了新的文献求助10
5秒前
YHX完成签到,获得积分10
5秒前
5秒前
qq.com完成签到,获得积分10
6秒前
鱼人完成签到,获得积分10
6秒前
执着乐双发布了新的文献求助20
6秒前
科研狗发布了新的文献求助10
7秒前
yiyiyi完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助xm采纳,获得10
8秒前
346952262发布了新的文献求助10
8秒前
小蘑菇应助Vxfhfdhkcds采纳,获得10
8秒前
Jasper应助重重采纳,获得10
8秒前
Gigi完成签到,获得积分10
9秒前
刘梦芮发布了新的文献求助10
9秒前
9秒前
Ava应助听话的捕采纳,获得10
10秒前
11秒前
且放青山远完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
领导范儿应助沉静白云采纳,获得10
14秒前
14秒前
14秒前
epdelmo发布了新的文献求助10
15秒前
虚幻的白秋完成签到,获得积分10
15秒前
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755494
求助须知:如何正确求助?哪些是违规求助? 3298655
关于积分的说明 10106495
捐赠科研通 3013264
什么是DOI,文献DOI怎么找? 1655069
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286