A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting

希尔伯特-黄变换 Echo(通信协议) 模式(计算机接口) 风力发电 功率(物理) 分解 回声状态网络 国家(计算机科学) 计算机科学 环境科学 人工神经网络 工程类 物理 电气工程 电信 人工智能 算法 热力学 循环神经网络 白噪声 操作系统 生物 计算机网络 生态学
作者
Uğur Yüzgeç,Emrah Dokur,MEHMET EMİN BALCI
出处
期刊:Energy [Elsevier]
卷期号:300: 131546-131546 被引量:3
标识
DOI:10.1016/j.energy.2024.131546
摘要

Accurate wind power forecasting is essential for (i) the management of wind energy, (ii) increasing the integration of generated power into the electrical grid, and (iii) enhancing maintenance efficiency. This paper proposes a novel hybrid model for short-term (1-hour ahead) wind power forecasting. The model integrates the echo-state network (ESN) architecture with empirical mode decomposition (EMD) to improve forecast accuracy. Unlike existing approaches that use separate models for each decomposed signal after EMD method, proposed model uses a single ESN structure to predict wind power by incorporating all decomposed signals and their past values. The main advantage of this architecture is that it eliminates the need to train multiple models, thereby streamlining the forecasting process. To evaluate the performance of the proposed model, one year of data from the West of Duddon Sands, Barrow, and Horns Power offshore wind farms is utilized. Firstly, the classical ESN model and the EMD-ESN hybrid model are compared for the three datasets. Then, a comprehensive evaluation is performed by comparing the results of the proposed model with commonly used standalone and hybrid forecasting models such as Multi-Layer Perceptron (MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), EMD-LSTM, EMD-BiLSTM, Variational Mode Decomposition based ESN (VMD-ESN), and Wavelet Decomposition based ESN (WD-ESN). The results show that the EMD-ESN hybrid model outperforms implemented models in predicting wind power in all three datasets. Furthermore, the proposed EMD-ESN model for an onshore wind turbine power data in Germany is compared with the SOTA models, such as Transformer, Informer, Autoformer, and Graph Patch Informer (GPI), in the literature. This study highlights the superior predictive capabilities of proposed model, making it a valuable tool for enhancing the accuracy of wind power forecasts, thereby contributing to the reliable integration of wind energy into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈最发布了新的文献求助10
刚刚
李李李李李完成签到,获得积分10
刚刚
1秒前
SunHY发布了新的文献求助10
1秒前
masonzhang完成签到,获得积分10
1秒前
皮卡皮卡完成签到,获得积分10
1秒前
陈梓发布了新的文献求助10
2秒前
FashionBoy应助Gilana采纳,获得10
2秒前
2秒前
javavwv完成签到,获得积分10
2秒前
2秒前
廖同学发布了新的文献求助10
2秒前
bkagyin应助缘来如风采纳,获得10
3秒前
zd发布了新的文献求助10
3秒前
右耳发布了新的文献求助10
4秒前
传奇3应助tjz采纳,获得10
4秒前
一区种子选手完成签到,获得积分10
4秒前
awaw发布了新的文献求助10
4秒前
masonzhang发布了新的文献求助10
4秒前
高高发布了新的文献求助10
5秒前
秋秋完成签到,获得积分10
5秒前
6秒前
飘逸的烧鹅完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
Jasper应助wah采纳,获得30
7秒前
7秒前
果实发布了新的文献求助10
8秒前
可爱的函函应助zhouzhaoyi采纳,获得10
9秒前
wlj完成签到 ,获得积分10
9秒前
SciGPT应助chenman9397采纳,获得10
9秒前
小二郎应助英俊的鱼采纳,获得10
9秒前
廖同学完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助masonzhang采纳,获得10
11秒前
11秒前
转圈晕倒发布了新的文献求助10
11秒前
11秒前
远山完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148527
求助须知:如何正确求助?哪些是违规求助? 2799622
关于积分的说明 7836197
捐赠科研通 2457012
什么是DOI,文献DOI怎么找? 1307684
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601655