A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting

希尔伯特-黄变换 Echo(通信协议) 模式(计算机接口) 风力发电 功率(物理) 分解 回声状态网络 国家(计算机科学) 计算机科学 环境科学 人工神经网络 工程类 物理 电气工程 电信 人工智能 算法 热力学 循环神经网络 计算机网络 生态学 白噪声 生物 操作系统
作者
Uğur Yüzgeç,Emrah Dokur,MEHMET EMİN BALCI
出处
期刊:Energy [Elsevier BV]
卷期号:300: 131546-131546 被引量:17
标识
DOI:10.1016/j.energy.2024.131546
摘要

Accurate wind power forecasting is essential for (i) the management of wind energy, (ii) increasing the integration of generated power into the electrical grid, and (iii) enhancing maintenance efficiency. This paper proposes a novel hybrid model for short-term (1-hour ahead) wind power forecasting. The model integrates the echo-state network (ESN) architecture with empirical mode decomposition (EMD) to improve forecast accuracy. Unlike existing approaches that use separate models for each decomposed signal after EMD method, proposed model uses a single ESN structure to predict wind power by incorporating all decomposed signals and their past values. The main advantage of this architecture is that it eliminates the need to train multiple models, thereby streamlining the forecasting process. To evaluate the performance of the proposed model, one year of data from the West of Duddon Sands, Barrow, and Horns Power offshore wind farms is utilized. Firstly, the classical ESN model and the EMD-ESN hybrid model are compared for the three datasets. Then, a comprehensive evaluation is performed by comparing the results of the proposed model with commonly used standalone and hybrid forecasting models such as Multi-Layer Perceptron (MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), EMD-LSTM, EMD-BiLSTM, Variational Mode Decomposition based ESN (VMD-ESN), and Wavelet Decomposition based ESN (WD-ESN). The results show that the EMD-ESN hybrid model outperforms implemented models in predicting wind power in all three datasets. Furthermore, the proposed EMD-ESN model for an onshore wind turbine power data in Germany is compared with the SOTA models, such as Transformer, Informer, Autoformer, and Graph Patch Informer (GPI), in the literature. This study highlights the superior predictive capabilities of proposed model, making it a valuable tool for enhancing the accuracy of wind power forecasts, thereby contributing to the reliable integration of wind energy into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
佰斯特威完成签到,获得积分10
1秒前
小蘑菇应助风中寄云采纳,获得10
1秒前
暴躁的蓝迪完成签到,获得积分10
1秒前
1秒前
热情的夏完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
和光同尘完成签到,获得积分10
3秒前
3秒前
3秒前
怕黑秋莲完成签到 ,获得积分10
4秒前
FK7完成签到,获得积分10
4秒前
whutyoyo完成签到,获得积分10
4秒前
6秒前
CO2发布了新的文献求助200
6秒前
6秒前
无花果应助健康的修洁采纳,获得10
6秒前
6秒前
ding应助Sugar采纳,获得10
6秒前
6秒前
yi发布了新的文献求助10
7秒前
泽泽完成签到,获得积分10
7秒前
lili发布了新的文献求助20
7秒前
8秒前
NexusExplorer应助dan1029采纳,获得10
8秒前
8秒前
田様应助长成大树采纳,获得10
8秒前
Northharbor完成签到,获得积分10
8秒前
幸福大白发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助yeahyeahyeah采纳,获得10
10秒前
饼子发布了新的文献求助10
11秒前
浮游应助岢岚采纳,获得10
11秒前
11秒前
阳光海云发布了新的文献求助30
11秒前
赘婿应助ZhangL采纳,获得10
12秒前
12秒前
昭玥完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587994
求助须知:如何正确求助?哪些是违规求助? 4003679
关于积分的说明 12394679
捐赠科研通 3680211
什么是DOI,文献DOI怎么找? 2028553
邀请新用户注册赠送积分活动 1062040
科研通“疑难数据库(出版商)”最低求助积分说明 948062