已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting

希尔伯特-黄变换 Echo(通信协议) 模式(计算机接口) 风力发电 功率(物理) 分解 回声状态网络 国家(计算机科学) 计算机科学 环境科学 人工神经网络 工程类 物理 电气工程 电信 人工智能 算法 热力学 循环神经网络 计算机网络 生态学 白噪声 生物 操作系统
作者
Uğur Yüzgeç,Emrah Dokur,MEHMET EMİN BALCI
出处
期刊:Energy [Elsevier BV]
卷期号:300: 131546-131546 被引量:17
标识
DOI:10.1016/j.energy.2024.131546
摘要

Accurate wind power forecasting is essential for (i) the management of wind energy, (ii) increasing the integration of generated power into the electrical grid, and (iii) enhancing maintenance efficiency. This paper proposes a novel hybrid model for short-term (1-hour ahead) wind power forecasting. The model integrates the echo-state network (ESN) architecture with empirical mode decomposition (EMD) to improve forecast accuracy. Unlike existing approaches that use separate models for each decomposed signal after EMD method, proposed model uses a single ESN structure to predict wind power by incorporating all decomposed signals and their past values. The main advantage of this architecture is that it eliminates the need to train multiple models, thereby streamlining the forecasting process. To evaluate the performance of the proposed model, one year of data from the West of Duddon Sands, Barrow, and Horns Power offshore wind farms is utilized. Firstly, the classical ESN model and the EMD-ESN hybrid model are compared for the three datasets. Then, a comprehensive evaluation is performed by comparing the results of the proposed model with commonly used standalone and hybrid forecasting models such as Multi-Layer Perceptron (MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), EMD-LSTM, EMD-BiLSTM, Variational Mode Decomposition based ESN (VMD-ESN), and Wavelet Decomposition based ESN (WD-ESN). The results show that the EMD-ESN hybrid model outperforms implemented models in predicting wind power in all three datasets. Furthermore, the proposed EMD-ESN model for an onshore wind turbine power data in Germany is compared with the SOTA models, such as Transformer, Informer, Autoformer, and Graph Patch Informer (GPI), in the literature. This study highlights the superior predictive capabilities of proposed model, making it a valuable tool for enhancing the accuracy of wind power forecasts, thereby contributing to the reliable integration of wind energy into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多喝温水完成签到 ,获得积分10
刚刚
1秒前
wise111发布了新的文献求助10
1秒前
2秒前
李爱国应助za采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
正直乘云发布了新的文献求助10
4秒前
XMC2022完成签到,获得积分10
5秒前
5秒前
aloha01发布了新的文献求助10
5秒前
suy发布了新的文献求助10
6秒前
7秒前
9秒前
二二春完成签到,获得积分10
9秒前
万默完成签到 ,获得积分10
9秒前
Dr.Wei完成签到,获得积分10
11秒前
罗大壮发布了新的文献求助10
12秒前
蓝白完成签到,获得积分10
13秒前
13秒前
14秒前
今后应助Tonson采纳,获得10
16秒前
suy完成签到,获得积分10
16秒前
orixero应助噗噗xie采纳,获得200
17秒前
18秒前
所所应助朱冰蓝采纳,获得10
18秒前
19秒前
熏同学发布了新的文献求助10
19秒前
jias完成签到,获得积分10
21秒前
Lucas应助wise111采纳,获得10
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448