A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting

希尔伯特-黄变换 Echo(通信协议) 模式(计算机接口) 风力发电 功率(物理) 分解 回声状态网络 国家(计算机科学) 计算机科学 环境科学 人工神经网络 工程类 物理 电气工程 电信 人工智能 算法 热力学 循环神经网络 计算机网络 生态学 白噪声 生物 操作系统
作者
Uğur Yüzgeç,Emrah Dokur,MEHMET EMİN BALCI
出处
期刊:Energy [Elsevier BV]
卷期号:300: 131546-131546 被引量:17
标识
DOI:10.1016/j.energy.2024.131546
摘要

Accurate wind power forecasting is essential for (i) the management of wind energy, (ii) increasing the integration of generated power into the electrical grid, and (iii) enhancing maintenance efficiency. This paper proposes a novel hybrid model for short-term (1-hour ahead) wind power forecasting. The model integrates the echo-state network (ESN) architecture with empirical mode decomposition (EMD) to improve forecast accuracy. Unlike existing approaches that use separate models for each decomposed signal after EMD method, proposed model uses a single ESN structure to predict wind power by incorporating all decomposed signals and their past values. The main advantage of this architecture is that it eliminates the need to train multiple models, thereby streamlining the forecasting process. To evaluate the performance of the proposed model, one year of data from the West of Duddon Sands, Barrow, and Horns Power offshore wind farms is utilized. Firstly, the classical ESN model and the EMD-ESN hybrid model are compared for the three datasets. Then, a comprehensive evaluation is performed by comparing the results of the proposed model with commonly used standalone and hybrid forecasting models such as Multi-Layer Perceptron (MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), EMD-LSTM, EMD-BiLSTM, Variational Mode Decomposition based ESN (VMD-ESN), and Wavelet Decomposition based ESN (WD-ESN). The results show that the EMD-ESN hybrid model outperforms implemented models in predicting wind power in all three datasets. Furthermore, the proposed EMD-ESN model for an onshore wind turbine power data in Germany is compared with the SOTA models, such as Transformer, Informer, Autoformer, and Graph Patch Informer (GPI), in the literature. This study highlights the superior predictive capabilities of proposed model, making it a valuable tool for enhancing the accuracy of wind power forecasts, thereby contributing to the reliable integration of wind energy into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tristan完成签到 ,获得积分10
1秒前
我思故我在完成签到,获得积分10
1秒前
2秒前
何浏亮完成签到,获得积分10
3秒前
阿成完成签到,获得积分10
3秒前
Pauline完成签到 ,获得积分10
3秒前
4秒前
微笑的语芙完成签到,获得积分10
4秒前
4秒前
小背包完成签到 ,获得积分10
4秒前
水寒发布了新的文献求助10
6秒前
希望天下0贩的0应助17采纳,获得10
6秒前
yu完成签到 ,获得积分10
6秒前
钟瑞乾完成签到,获得积分10
6秒前
花痴的电灯泡完成签到,获得积分10
7秒前
虚心念桃完成签到,获得积分10
8秒前
jiaolulu发布了新的文献求助10
9秒前
zyw完成签到 ,获得积分10
9秒前
ironsilica完成签到,获得积分10
12秒前
13秒前
被动科研完成签到,获得积分10
15秒前
斗牛的番茄完成签到 ,获得积分10
16秒前
所所应助时尚俊驰采纳,获得10
16秒前
zgt01发布了新的文献求助10
20秒前
背后如彤完成签到 ,获得积分10
22秒前
23秒前
通通通完成签到,获得积分10
24秒前
李治海完成签到,获得积分10
24秒前
诸葛烤鸭完成签到,获得积分10
24秒前
君君完成签到 ,获得积分10
25秒前
long0809完成签到,获得积分10
25秒前
勤劳寒烟完成签到,获得积分10
27秒前
明亮凡梦发布了新的文献求助10
28秒前
fat完成签到,获得积分10
29秒前
29秒前
29秒前
ocean完成签到,获得积分10
30秒前
Jasper应助jiaolulu采纳,获得10
31秒前
31秒前
亚亚完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022