A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting

希尔伯特-黄变换 Echo(通信协议) 模式(计算机接口) 风力发电 功率(物理) 分解 回声状态网络 国家(计算机科学) 计算机科学 环境科学 人工神经网络 工程类 物理 电气工程 电信 人工智能 算法 热力学 循环神经网络 计算机网络 生态学 白噪声 生物 操作系统
作者
Uğur Yüzgeç,Emrah Dokur,MEHMET EMİN BALCI
出处
期刊:Energy [Elsevier BV]
卷期号:300: 131546-131546 被引量:17
标识
DOI:10.1016/j.energy.2024.131546
摘要

Accurate wind power forecasting is essential for (i) the management of wind energy, (ii) increasing the integration of generated power into the electrical grid, and (iii) enhancing maintenance efficiency. This paper proposes a novel hybrid model for short-term (1-hour ahead) wind power forecasting. The model integrates the echo-state network (ESN) architecture with empirical mode decomposition (EMD) to improve forecast accuracy. Unlike existing approaches that use separate models for each decomposed signal after EMD method, proposed model uses a single ESN structure to predict wind power by incorporating all decomposed signals and their past values. The main advantage of this architecture is that it eliminates the need to train multiple models, thereby streamlining the forecasting process. To evaluate the performance of the proposed model, one year of data from the West of Duddon Sands, Barrow, and Horns Power offshore wind farms is utilized. Firstly, the classical ESN model and the EMD-ESN hybrid model are compared for the three datasets. Then, a comprehensive evaluation is performed by comparing the results of the proposed model with commonly used standalone and hybrid forecasting models such as Multi-Layer Perceptron (MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), EMD-LSTM, EMD-BiLSTM, Variational Mode Decomposition based ESN (VMD-ESN), and Wavelet Decomposition based ESN (WD-ESN). The results show that the EMD-ESN hybrid model outperforms implemented models in predicting wind power in all three datasets. Furthermore, the proposed EMD-ESN model for an onshore wind turbine power data in Germany is compared with the SOTA models, such as Transformer, Informer, Autoformer, and Graph Patch Informer (GPI), in the literature. This study highlights the superior predictive capabilities of proposed model, making it a valuable tool for enhancing the accuracy of wind power forecasts, thereby contributing to the reliable integration of wind energy into the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
2秒前
麦克阿宇发布了新的文献求助10
3秒前
fengwx完成签到,获得积分10
3秒前
进步完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
5秒前
在水一方应助张建采纳,获得10
6秒前
愤怒的店员完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
深情安青应助俏皮的白柏采纳,获得10
9秒前
福缘发布了新的文献求助10
10秒前
Rondab应助好好学习采纳,获得30
10秒前
11秒前
12秒前
ZJY发布了新的文献求助10
14秒前
xxcc12356完成签到,获得积分10
15秒前
论文侠发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
eaten应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得20
16秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
MchemG应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
MchemG应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
福缘完成签到,获得积分10
18秒前
在水一方应助ZJY采纳,获得10
18秒前
qy发布了新的文献求助10
19秒前
QQ完成签到,获得积分10
19秒前
小小科研员完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068