亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing generalization in genetic programming hyper-heuristics through mini-batch sampling strategies for dynamic workflow scheduling

计算机科学 启发式 遗传程序设计 工作流程 调度(生产过程) 一般化 动态规划 采样(信号处理) 遗传算法 数学优化 机器学习 数学 算法 数据库 数学分析 操作系统 滤波器(信号处理) 计算机视觉
作者
Yifan Yang,Gang Chen,Hui Ma,Sven Hartmann,Mengjie Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:678: 120975-120975
标识
DOI:10.1016/j.ins.2024.120975
摘要

Genetic Programming Hyper-heuristics (GPHH) have been successfully used to evolve scheduling rules for Dynamic Workflow Scheduling (DWS) as well as other challenging combinatorial optimization problems. The method of sampling training instances has a significant impact on the generalization ability of GPHH, yet they are rarely addressed in existing research. This article aims to fill this gap by proposing a GPHH algorithm with a sampling strategy to thoroughly investigate the impact of six instance sampling strategies on algorithmic generalization, including one rotation strategy, three mini-batch strategies, and two hybrid strategies. Experiments across four scenarios with varying settings reveal that: (1) mini-batch with random sampling can outperform rotation in generalizing to unseen workflow scheduling problems under the same computational cost; (2) employing a hybrid strategy that combines rotation and mini-batch further enhances the generalization ability of GPHH; and (3) mini-batch and hybrid strategies can effectively enable heuristics trained on small-scale training instances generalizing well to large-scale unseen ones. These findings highlight the potential of mini-batch strategies in GPHH, offering improved generalization performance while maintaining diversity and suggesting promising avenues for further exploration in GPHH domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得50
9秒前
量子星尘发布了新的文献求助10
45秒前
47秒前
xiaxia发布了新的文献求助10
51秒前
Beyond095完成签到 ,获得积分10
51秒前
1分钟前
赘婿应助xiaxia采纳,获得50
1分钟前
WW发布了新的文献求助10
1分钟前
1分钟前
orixero应助WW采纳,获得10
1分钟前
西伯利亚老母猪完成签到,获得积分10
1分钟前
2分钟前
cao_bq完成签到,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
华仔应助孟繁荣采纳,获得10
2分钟前
3分钟前
孟繁荣发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
zml发布了新的文献求助10
4分钟前
Ljm应助科研通管家采纳,获得10
4分钟前
lc发布了新的文献求助10
4分钟前
4分钟前
情怀应助lc采纳,获得10
4分钟前
xiaxia发布了新的文献求助50
4分钟前
zml完成签到,获得积分10
4分钟前
as9988776654完成签到 ,获得积分10
4分钟前
赘婿应助孟繁荣采纳,获得10
5分钟前
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
孟繁荣发布了新的文献求助10
5分钟前
笨笨山芙完成签到 ,获得积分10
5分钟前
矢思然完成签到,获得积分10
5分钟前
SU完成签到,获得积分10
6分钟前
7分钟前
冰雪暖冬完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918244
求助须知:如何正确求助?哪些是违规求助? 4190933
关于积分的说明 13015499
捐赠科研通 3960714
什么是DOI,文献DOI怎么找? 2171367
邀请新用户注册赠送积分活动 1189396
关于科研通互助平台的介绍 1097785