亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing generalization in genetic programming hyper-heuristics through mini-batch sampling strategies for dynamic workflow scheduling

计算机科学 启发式 遗传程序设计 工作流程 调度(生产过程) 一般化 动态规划 采样(信号处理) 遗传算法 数学优化 机器学习 数学 算法 数据库 数学分析 操作系统 滤波器(信号处理) 计算机视觉
作者
Yifan Yang,Gang Chen,Hui Ma,Sven Hartmann,Mengjie Zhang
出处
期刊:Information Sciences [Elsevier]
卷期号:678: 120975-120975
标识
DOI:10.1016/j.ins.2024.120975
摘要

Genetic Programming Hyper-heuristics (GPHH) have been successfully used to evolve scheduling rules for Dynamic Workflow Scheduling (DWS) as well as other challenging combinatorial optimization problems. The method of sampling training instances has a significant impact on the generalization ability of GPHH, yet they are rarely addressed in existing research. This article aims to fill this gap by proposing a GPHH algorithm with a sampling strategy to thoroughly investigate the impact of six instance sampling strategies on algorithmic generalization, including one rotation strategy, three mini-batch strategies, and two hybrid strategies. Experiments across four scenarios with varying settings reveal that: (1) mini-batch with random sampling can outperform rotation in generalizing to unseen workflow scheduling problems under the same computational cost; (2) employing a hybrid strategy that combines rotation and mini-batch further enhances the generalization ability of GPHH; and (3) mini-batch and hybrid strategies can effectively enable heuristics trained on small-scale training instances generalizing well to large-scale unseen ones. These findings highlight the potential of mini-batch strategies in GPHH, offering improved generalization performance while maintaining diversity and suggesting promising avenues for further exploration in GPHH domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心惜梦完成签到,获得积分10
2秒前
Mario发布了新的文献求助10
5秒前
17秒前
日光倾城完成签到 ,获得积分10
19秒前
Criminology34应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
23秒前
Mario完成签到,获得积分10
24秒前
万能图书馆应助LucyMartinez采纳,获得10
27秒前
32秒前
38秒前
LucyMartinez发布了新的文献求助10
45秒前
49秒前
55秒前
Magic麦发布了新的文献求助10
1分钟前
1分钟前
庾稀给庾稀的求助进行了留言
1分钟前
hb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
shou关注了科研通微信公众号
1分钟前
sj发布了新的文献求助10
1分钟前
sj完成签到,获得积分10
1分钟前
1分钟前
shou发布了新的文献求助10
1分钟前
1分钟前
1分钟前
充电宝应助哭泣的擎汉采纳,获得10
1分钟前
刘xy发布了新的文献求助10
2分钟前
Magic麦完成签到,获得积分10
2分钟前
2分钟前
orixero应助Magic麦采纳,获得10
2分钟前
哈哈哈哈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746732
求助须知:如何正确求助?哪些是违规求助? 5438326
关于积分的说明 15355815
捐赠科研通 4886762
什么是DOI,文献DOI怎么找? 2627407
邀请新用户注册赠送积分活动 1575892
关于科研通互助平台的介绍 1532625