Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway

上皮-间质转换 基因敲除 糖酵解 乳酸脱氢酶 癌症研究 细胞生物学 化学 生物 医学 内科学 癌症 细胞凋亡 生物化学 转移 新陈代谢
作者
Xuanxuan Zhang,Jicong Chen,Ruohui Lin,Yaping Huang,Ziyuan Wang,Susu Xu,Lei Wang,Fang Chen,Jian Zhang,Pan Ke,Zhiqi Yin
出处
期刊:Redox biology [Elsevier]
卷期号:75: 103246-103246
标识
DOI:10.1016/j.redox.2024.103246
摘要

High levels of urinary lactate are an increased risk of progression in patients with diabetic kidney disease (DKD). However, it is still unveiled how lactate drive DKD. Epithelial-mesenchymal transition (EMT), which is characterized by the loss of epithelial cells polarity and cell-cell adhesion, and the acquisition of mesenchymal-like phenotypes, is widely recognized a critical contributor to DKD. Here, we found a switch from oxidative phosphorylation (OXPHOS) toward glycolysis in AGEs-induced renal tubular epithelial cells, thus leading to elevated levels of renal lactic acid. We demonstrated that reducing the lactate levels markedly delayed EMT progression and improved renal tubular fibrosis in DKD. Mechanically, we observed lactate increased the levels of histone H3 lysine 14 lactylation (H3K14la) in DKD. Chip-seq & RNA-seq results showed histone lactylation contributed to EMT process by facilitating KLF5 expression. Moreover, KLF5 recognized the promotor of CDH1 and inhibited its transcription, which accelerated EMT of DKD. Additionally, nephro-specific knockdown and pharmacological inhibition of KLF5 diminished EMT development and attenuated DKD fibrosis. Thus, our study provides better understanding of epigenetic regulation of DKD pathogenesis, and new therapeutic strategy for DKD by disruption of the lactate-drived H3K14la/KLF5 pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的代容完成签到,获得积分10
1秒前
桐桐应助屈初雪采纳,获得10
2秒前
Akim应助ayu采纳,获得10
3秒前
3秒前
香蕉觅云应助英杰杰采纳,获得10
3秒前
ding应助开心就吃猕猴桃采纳,获得30
4秒前
4秒前
5秒前
MMP完成签到,获得积分10
6秒前
任ren发布了新的文献求助10
7秒前
金文完成签到 ,获得积分10
7秒前
就知道完成签到,获得积分10
7秒前
9秒前
9秒前
无情的凌文完成签到,获得积分20
10秒前
11秒前
汀烟发布了新的文献求助30
11秒前
13秒前
沈sm发布了新的文献求助10
13秒前
15秒前
15秒前
小小科研人完成签到,获得积分10
16秒前
18秒前
19秒前
深情安青应助Forest采纳,获得10
20秒前
20秒前
21秒前
华仔应助金蕊采纳,获得10
21秒前
kittykitten完成签到 ,获得积分10
22秒前
xing1995完成签到,获得积分20
23秒前
24秒前
研友_VZG7GZ应助萧水白采纳,获得100
27秒前
研学完成签到,获得积分10
27秒前
xing1995发布了新的文献求助10
27秒前
NexusExplorer应助搞怪的人龙采纳,获得10
27秒前
28秒前
111完成签到 ,获得积分10
28秒前
zyh发布了新的文献求助10
29秒前
歪歪象完成签到,获得积分10
33秒前
超级冰薇发布了新的文献求助10
33秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147946
求助须知:如何正确求助?哪些是违规求助? 2798939
关于积分的说明 7832669
捐赠科研通 2456017
什么是DOI,文献DOI怎么找? 1307045
科研通“疑难数据库(出版商)”最低求助积分说明 628043
版权声明 601620