Decentralized Online Order Fulfillment in Omni-Channel Retailers

订单(交换) 业务 频道(广播) 马尔可夫决策过程 定量配给 运筹学 可解释性 过程(计算) 计算机科学 马尔可夫过程 电信 经济 数学 人工智能 财务 医疗保健 统计 经济增长 操作系统
作者
Opher Baron,André A. Ciré,Sinem Savaşer
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (8): 1719-1738 被引量:7
标识
DOI:10.1177/10591478241255066
摘要

We consider an order fulfillment problem of an omni-channel retailer that ships online orders from its distribution center (DC) and brick-and-mortar stores. Stores use their local information, not observed by the retailer, that can lead them to accept or reject fulfillment requests of items in an online order. We investigate the problem of sequencing requests to stores and inventory rationing decisions at the DC to minimize expected costs under uncertain store acceptance behavior and when items are indistinguishable in terms of shipping. First, under the scenario that stores are used only when the DC has insufficient inventory, we propose a Markov Decision Process formulation and analyze the performance of myopic policies that are preferable because of their interpretability. We show that the performance rate of a myopic approach that orders stores by cost only depends on the number of items in an order, which is small in practice. We also determine conditions for the range of acceptance probabilities for the myopic policy to be optimal for small-sized orders. Using optimality conditions for a special case of the problem, we develop an adaptive variant of the myopic policy, and propose a new degree-based strategy that balances shipping costs and acceptance probabilities. Numerical testing suggests that the best-performing sequencing policy is within 1% of optimality on average. Moreover, using two years of data from a large omni-channel retailer in North America, we observe that adaptive policies, albeit more complex, are beneficial in reducing costs and split deliveries if acceptance rates can be estimated accurately. Second, we determine when the retailer should ship from stores or ration the inventory at the DC. We show that for single-item orders, the optimal policy has a threshold structure, where, remarkably, the highest priority region is also subject to rationing. We then consider the novel multi-unit-single-item rationing problem, and leverage the structure of the single-unit model to develop a heuristic. We numerically establish the efficacy of rationing models and our heuristic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助wanci采纳,获得10
刚刚
淡淡夕阳完成签到,获得积分10
刚刚
小八统治世界完成签到,获得积分10
刚刚
刚刚
刚刚
99663232完成签到,获得积分10
刚刚
1秒前
失眠忆曼完成签到,获得积分10
1秒前
1秒前
娃娃菜完成签到,获得积分10
1秒前
Ava应助斗转星移采纳,获得10
2秒前
2秒前
云解完成签到,获得积分10
3秒前
zerk完成签到,获得积分10
3秒前
ww完成签到,获得积分10
3秒前
多情以山发布了新的文献求助10
3秒前
lswhyr发布了新的文献求助20
3秒前
布吉布发布了新的文献求助10
4秒前
4秒前
岁城发布了新的文献求助10
5秒前
5秒前
领导范儿应助LEE采纳,获得10
5秒前
wy完成签到,获得积分10
6秒前
苏休夫发布了新的文献求助10
6秒前
李火火火完成签到,获得积分10
6秒前
6秒前
7秒前
YCQ发布了新的文献求助10
8秒前
内容涉嫌违规完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
浅水鱼完成签到,获得积分10
10秒前
yexyz完成签到,获得积分10
10秒前
非洲三巨头完成签到,获得积分10
10秒前
大模型应助zuo采纳,获得10
10秒前
大模型应助缺口口采纳,获得10
10秒前
大福发布了新的文献求助10
10秒前
10秒前
hj关注了科研通微信公众号
10秒前
JJJLX完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503