Zn doping induced local lattice expansion for hierarchical hollow NiCo-LDH toward enhanced electrochemical performance in asymmetric supercapacitors

超级电容器 兴奋剂 电化学 材料科学 格子(音乐) 化学工程 纳米技术 化学 光电子学 物理化学 物理 电极 工程类 声学
作者
Lingling Zhang,Yumei Luo,Qingyong Wang,Dan Wei,Haopan Hu,Peixiu Yan,Feng Xu,Shujun Qiu,Fen Xu,Cao Wei-ping,Lixian Sun,Hailiang Chu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:92: 112195-112195
标识
DOI:10.1016/j.est.2024.112195
摘要

The exploration of transition metal-based electrode materials for asymmetric supercapacitors has garnered considerable interest owing to their potential to achieve high-energy storage and demonstrate outstanding electrochemical performance. In this study, we designed and synthesized Zn-doped NiCo layered double hydroxide (LDH), a hollow supercapacitor electrode material, through a facile ion exchange method at room temperature. Doping Zn ions results in an increased interlayer spacing expanding from 0.815 nm (ZIF-67@NiCo-LDH) to 0.874 nm (ZnNiCo-LDH-7), which facilitates sufficient penetration of the electrolyte and accelerates the charge transfer kinetics. Moreover, by employing the metal-organic framework ZIF-67 as a precursor, ZnNiCo-LDH nanosheets assembled in hollow nanocages exhibit remarkable electrochemical performance due to their large contact area with electrolytes and superior electrical conductivity. The synthesized ZnNiCo-LDH electrode material achieves a high specific capacitance of 1908 F g−1 at 1 A g−1. When integrated into an asymmetric supercapacitor, in combination with activated carbon (AC), the device delivers an outstanding energy density of 41.5 Wh kg−1 at a power density of 825 W kg−1. Notably, the assembled device shows exceptional cycling stability, retaining 120 % of its initial specific capacitance even after 5000 cycles at a current density of 5 A g−1. The extraordinary performance and remarkable stability are mainly due to Zn ion doping-induced local lattice expansion and the hierarchical hollow nanocage structure, which underscores its highly promising potential in supercapacitor applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
入江发布了新的文献求助10
刚刚
刚刚
hzs发布了新的文献求助30
1秒前
1秒前
科研通AI2S应助丹yeah采纳,获得10
2秒前
山茶发布了新的文献求助10
2秒前
故笺完成签到,获得积分10
2秒前
健康的大碗完成签到 ,获得积分10
3秒前
传感魂应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得20
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
xinghhhe完成签到,获得积分10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
传感魂应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
YUYUYU应助科研通管家采纳,获得10
6秒前
虾502发布了新的文献求助10
6秒前
7秒前
俏皮元容完成签到,获得积分20
7秒前
David完成签到,获得积分10
7秒前
Orange应助爱听歌的采枫采纳,获得10
9秒前
风再起时发布了新的文献求助10
9秒前
俏皮元容发布了新的文献求助10
10秒前
huihui发布了新的文献求助10
10秒前
科研通AI2S应助xiaotaiyang采纳,获得10
11秒前
慕青应助LL采纳,获得10
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175