Zn doping induced local lattice expansion for hierarchical hollow NiCo-LDH toward enhanced electrochemical performance in asymmetric supercapacitors

超级电容器 兴奋剂 电化学 材料科学 格子(音乐) 化学工程 纳米技术 化学 光电子学 物理化学 物理 电极 工程类 声学
作者
Lingling Zhang,Yumei Luo,Qingyong Wang,Dan Wei,Haopan Hu,Peixiu Yan,Feng Xu,Shujun Qiu,Fen Xu,Cao Wei-ping,Lixian Sun,Hailiang Chu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:92: 112195-112195 被引量:2
标识
DOI:10.1016/j.est.2024.112195
摘要

The exploration of transition metal-based electrode materials for asymmetric supercapacitors has garnered considerable interest owing to their potential to achieve high-energy storage and demonstrate outstanding electrochemical performance. In this study, we designed and synthesized Zn-doped NiCo layered double hydroxide (LDH), a hollow supercapacitor electrode material, through a facile ion exchange method at room temperature. Doping Zn ions results in an increased interlayer spacing expanding from 0.815 nm (ZIF-67@NiCo-LDH) to 0.874 nm (ZnNiCo-LDH-7), which facilitates sufficient penetration of the electrolyte and accelerates the charge transfer kinetics. Moreover, by employing the metal-organic framework ZIF-67 as a precursor, ZnNiCo-LDH nanosheets assembled in hollow nanocages exhibit remarkable electrochemical performance due to their large contact area with electrolytes and superior electrical conductivity. The synthesized ZnNiCo-LDH electrode material achieves a high specific capacitance of 1908 F g−1 at 1 A g−1. When integrated into an asymmetric supercapacitor, in combination with activated carbon (AC), the device delivers an outstanding energy density of 41.5 Wh kg−1 at a power density of 825 W kg−1. Notably, the assembled device shows exceptional cycling stability, retaining 120 % of its initial specific capacitance even after 5000 cycles at a current density of 5 A g−1. The extraordinary performance and remarkable stability are mainly due to Zn ion doping-induced local lattice expansion and the hierarchical hollow nanocage structure, which underscores its highly promising potential in supercapacitor applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
清晏完成签到,获得积分10
3秒前
曲书文完成签到,获得积分10
4秒前
李瑞瑞发布了新的文献求助10
4秒前
5123完成签到,获得积分10
4秒前
勤劳落雁发布了新的文献求助10
4秒前
4秒前
7秒前
xuxu完成签到 ,获得积分10
7秒前
8秒前
毛毛虫发布了新的文献求助10
8秒前
科研通AI5应助朴斓采纳,获得10
9秒前
陈彦冰完成签到,获得积分10
9秒前
tianny完成签到,获得积分10
10秒前
浪迹天涯发布了新的文献求助10
11秒前
星星发布了新的文献求助10
11秒前
李瑞瑞完成签到,获得积分10
12秒前
12秒前
14秒前
星辰大海应助jy采纳,获得10
14秒前
15秒前
我是站长才怪应助Khr1stINK采纳,获得10
15秒前
16秒前
xh完成签到,获得积分10
17秒前
para_团结完成签到,获得积分10
18秒前
怡然剑成发布了新的文献求助10
18秒前
19秒前
19秒前
ipeakkka发布了新的文献求助10
19秒前
George完成签到,获得积分10
21秒前
WDK完成签到,获得积分10
21秒前
情怀应助敏感的芷采纳,获得10
21秒前
Orange应助方勇飞采纳,获得10
22秒前
FashionBoy应助烂漫驳采纳,获得10
22秒前
23秒前
24秒前
大鱼完成签到,获得积分10
24秒前
24秒前
lu完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824