已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 地质学 地震学 系统工程
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124189-124189 被引量:6
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗的萝发布了新的文献求助10
2秒前
科研通AI6.2应助s_chui采纳,获得10
5秒前
9秒前
Sulfur完成签到,获得积分10
10秒前
14秒前
休斯顿完成签到,获得积分10
17秒前
18秒前
kk_1315完成签到,获得积分0
20秒前
吴雨胡完成签到,获得积分10
22秒前
灰灰完成签到,获得积分10
22秒前
25秒前
卷毛维安完成签到 ,获得积分10
25秒前
哈哈哈完成签到 ,获得积分10
25秒前
26秒前
Crw__完成签到,获得积分10
27秒前
31秒前
DiuO发布了新的文献求助10
32秒前
YUEER发布了新的文献求助10
32秒前
完美世界应助时空星客采纳,获得10
32秒前
zzz发布了新的文献求助10
35秒前
haha完成签到 ,获得积分10
37秒前
38秒前
大气思柔完成签到 ,获得积分10
41秒前
43秒前
43秒前
pegasus0802完成签到,获得积分10
46秒前
奥一奥发布了新的文献求助10
48秒前
CodeCraft应助能闭嘴吗采纳,获得10
53秒前
55秒前
Orange应助奥一奥采纳,获得10
57秒前
Splaink完成签到 ,获得积分10
58秒前
向守卫发布了新的文献求助10
58秒前
mmmc大好完成签到,获得积分10
58秒前
豆豆完成签到,获得积分10
59秒前
时空星客发布了新的文献求助10
1分钟前
1分钟前
玛琪玛小姐的狗完成签到,获得积分20
1分钟前
CC发布了新的文献求助10
1分钟前
DiuO完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870534
求助须知:如何正确求助?哪些是违规求助? 6463278
关于积分的说明 15664266
捐赠科研通 4986619
什么是DOI,文献DOI怎么找? 2688914
邀请新用户注册赠送积分活动 1631289
关于科研通互助平台的介绍 1589336