已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 系统工程 地震学 地质学
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124189-124189 被引量:1
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yotta完成签到,获得积分10
刚刚
哈哈哈完成签到 ,获得积分10
3秒前
一条蛆完成签到 ,获得积分10
3秒前
赘婿应助tufuczy采纳,获得10
3秒前
喝儿何完成签到,获得积分10
15秒前
丘比特应助小白白采纳,获得10
15秒前
yutang完成签到 ,获得积分10
16秒前
可靠馒头完成签到,获得积分10
18秒前
文静外套发布了新的文献求助10
18秒前
3113129605完成签到 ,获得积分10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
23秒前
23秒前
vagabond完成签到 ,获得积分10
23秒前
ff完成签到 ,获得积分10
23秒前
25秒前
26秒前
无花果应助科研进化中采纳,获得10
28秒前
万能图书馆应助付创采纳,获得10
29秒前
7777发布了新的文献求助10
30秒前
李志全完成签到 ,获得积分10
31秒前
36秒前
大个应助文静外套采纳,获得10
39秒前
39秒前
xs发布了新的文献求助10
40秒前
猪猪侠发布了新的文献求助10
43秒前
tuanheqi应助要好好看文献采纳,获得100
45秒前
猪猪侠完成签到,获得积分10
48秒前
52秒前
文静外套完成签到,获得积分20
53秒前
田様应助刘露采纳,获得30
55秒前
Owen应助小白白采纳,获得10
56秒前
aldehyde完成签到,获得积分0
57秒前
南烛完成签到 ,获得积分10
57秒前
57秒前
1分钟前
付创发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176