HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 地质学 地震学 系统工程
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124189-124189 被引量:6
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助三只兔子采纳,获得10
刚刚
ash发布了新的文献求助10
刚刚
刚刚
古风发布了新的文献求助10
刚刚
1秒前
幽默书瑶发布了新的文献求助10
3秒前
大个应助xiaodu采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
zdd完成签到,获得积分10
5秒前
自洽发布了新的文献求助10
6秒前
power完成签到,获得积分10
6秒前
亗sui完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
赘婿应助侠侠大王采纳,获得10
9秒前
11秒前
11秒前
舒服的寒松完成签到 ,获得积分10
11秒前
大方的乌冬面完成签到 ,获得积分10
12秒前
伶俐黄豆应助xiaobai123456采纳,获得10
13秒前
Inevitable发布了新的文献求助10
13秒前
调皮的笑阳完成签到 ,获得积分10
13秒前
14秒前
18秒前
脑洞疼应助hh采纳,获得10
18秒前
由凡发布了新的文献求助10
19秒前
19秒前
Mic应助ash采纳,获得10
20秒前
CorrectSTH完成签到,获得积分10
22秒前
Owen应助xiao采纳,获得10
24秒前
24秒前
zoushiyi完成签到 ,获得积分10
27秒前
Inevitable完成签到,获得积分10
28秒前
28秒前
禾风完成签到,获得积分10
28秒前
地形图完成签到 ,获得积分10
32秒前
33秒前
35秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172