HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 地质学 地震学 系统工程
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124189-124189 被引量:1
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
葡萄完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助zz采纳,获得10
7秒前
SciGPT应助better采纳,获得10
8秒前
在水一方应助欢呼芷雪采纳,获得10
8秒前
猕猴桃发布了新的文献求助10
8秒前
9秒前
zxy发布了新的文献求助10
11秒前
机智张发布了新的文献求助10
12秒前
小刘发布了新的文献求助30
13秒前
14秒前
小敏发布了新的文献求助10
15秒前
18秒前
YANGLan完成签到,获得积分10
19秒前
19秒前
Lucas应助corner采纳,获得10
19秒前
20秒前
调研昵称发布了新的文献求助10
21秒前
布丁发布了新的文献求助10
21秒前
大模型应助小柒采纳,获得10
22秒前
polarbear完成签到 ,获得积分10
22秒前
ddsvdv完成签到 ,获得积分10
23秒前
小敏完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
Longbin李完成签到,获得积分10
24秒前
24秒前
善良的沛白完成签到,获得积分10
24秒前
25秒前
25秒前
冷雨发布了新的文献求助10
25秒前
Lucas应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
fifteen应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170388
求助须知:如何正确求助?哪些是违规求助? 2821553
关于积分的说明 7934967
捐赠科研通 2481839
什么是DOI,文献DOI怎么找? 1322122
科研通“疑难数据库(出版商)”最低求助积分说明 633512
版权声明 602608