HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 地质学 地震学 系统工程
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124189-124189 被引量:6
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诶诶完成签到,获得积分10
刚刚
刚刚
yueyue3SCI完成签到,获得积分10
刚刚
1秒前
xulili完成签到,获得积分20
2秒前
呜哩哇啦完成签到,获得积分20
2秒前
彭于晏应助heady采纳,获得10
2秒前
FashionBoy应助粗心的无剑采纳,获得10
3秒前
奋斗晓旋完成签到 ,获得积分10
3秒前
3秒前
lihuanmoon发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
怪诞完成签到,获得积分10
4秒前
高兴完成签到,获得积分10
6秒前
lss完成签到,获得积分10
7秒前
魏小梅发布了新的文献求助10
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
张瑜发布了新的文献求助10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
嘿嘿应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
zoe_bee发布了新的文献求助10
9秒前
Lucas应助爱学习的晴晴采纳,获得10
9秒前
9秒前
潇洒的诗桃完成签到,获得积分0
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653351
求助须知:如何正确求助?哪些是违规求助? 4789770
关于积分的说明 15063822
捐赠科研通 4811874
什么是DOI,文献DOI怎么找? 2574163
邀请新用户注册赠送积分活动 1529858
关于科研通互助平台的介绍 1488577