HeMTAN: Hybrid task-adapted experts-based multi-task attention network for unseen compound fault decoupling diagnosis of rotating machinery

计算机科学 人工智能 解耦(概率) 断层(地质) 任务(项目管理) 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 数据挖掘 控制工程 工程类 地质学 地震学 系统工程
作者
Jimeng Li,Wei Wang,Sai Zhong,Zong Meng,Lixiao Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124189-124189 被引量:6
标识
DOI:10.1016/j.eswa.2024.124189
摘要

In a rotating machinery system, a single fault of one component often causes damage to other related components, thus inducing compound faults. Without compound fault data to train intelligent models, the realization of decoupling diagnosis and accurate identification of unseen compound faults is not only of great practical significance for the safety management of equipment operation and maintenance, but also remains a challenging topic. Considering some shortcomings in the current intelligent diagnosis of compound faults, as well as the relatedness and difference between different fault features in compound fault signals, a hybrid task-adapted experts-based multi-task attention network (HeMTAN) model is investigated in this paper, which can be used for identify single faults and unseen compound faults in mechanical transmission systems. Firstly, variational mode decomposition is combined with Hilbert-Huang transform to obtain time–frequency graphs of time series signal as model input, so as to better characterize different fault features. Secondly, a hybrid task-adapted expert module is designed to extract the common and some private feature information of different learning tasks from different multi-perspective, and then the important information related to the specific learning task is further mined by the constructed private feature attention-based densely connected module. Finally, the diagnosis results can be obtained by fusing the outputs of the classifier of the two learning tasks. The performance of the investigated HeMTAN model is analyzed by the gearbox compound fault dataset and rolling bearing compound fault dataset, and the results demonstrate that the investigated HEMTAN method has significantly improved diagnosis accuracy and generalization performance
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
头发乱了发布了新的文献求助10
刚刚
友好的牛排完成签到,获得积分0
刚刚
1秒前
1秒前
niakburket发布了新的文献求助20
1秒前
2秒前
bonnie发布了新的文献求助10
2秒前
xingxing完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
八方面发布了新的文献求助10
5秒前
伯符完成签到 ,获得积分10
5秒前
5秒前
6秒前
浮游应助lqq的一家之主采纳,获得10
7秒前
烟花应助小白采纳,获得10
8秒前
8秒前
smj发布了新的文献求助10
8秒前
烟花应助阿龙采纳,获得10
8秒前
一个左正蹬完成签到,获得积分10
8秒前
Brian发布了新的文献求助10
8秒前
小宁完成签到,获得积分10
9秒前
11秒前
冉冉完成签到 ,获得积分0
11秒前
yatou5651发布了新的文献求助10
12秒前
yyy完成签到,获得积分10
12秒前
12秒前
黎某发布了新的文献求助10
12秒前
13秒前
129600完成签到,获得积分10
13秒前
八方面完成签到,获得积分10
13秒前
NexusExplorer应助adsdas465采纳,获得10
13秒前
思源应助baimafeima采纳,获得30
13秒前
可爱的函函应助淡定世立采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
Yuan完成签到,获得积分10
16秒前
jamie关注了科研通微信公众号
16秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120240
求助须知:如何正确求助?哪些是违规求助? 4325809
关于积分的说明 13477659
捐赠科研通 4159323
什么是DOI,文献DOI怎么找? 2279425
邀请新用户注册赠送积分活动 1281254
关于科研通互助平台的介绍 1219991