方位角
雷达
手势
计算机科学
手势识别
极高频率
人工智能
连续波雷达
计算机视觉
雷达成像
仰角(弹道)
多普勒效应
多普勒雷达
声学
遥感
地质学
电信
工程类
光学
物理
结构工程
天文
作者
Qingchuan Li,Linsheng Liu,Shuang Hao,Guangyang Wan
标识
DOI:10.1109/prai55851.2022.9904227
摘要
The millimeter wave radar-based dynamic gesture recognition is the use of electromagnetic waves to obtain the motion characteristics of human dynamic gestures, to achieve automatic recognition of gestures. This paper proposes an frequency modulated continuous wave (FMCW) millimeter wave radar gesture recognition technology, the analysis and processing of radar echo, after the radar signal detection, in a complex environment to extract the gesture and radar distance, speed and other features, to get the radar and target azimuth angle, elevation angle, distance-weighted doppler, azimuth elevation angle covariance, azimuth angle-weighted doppler correlation, elevation angle-weighted doppler correlation. The six features are used to classify the six gestures based on the features using a shallow artificial neural network. It is demonstrated that this method can quickly and effectively identify different categories of gestures and has good generalisation to untrained test sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI