自适应控制
数学
控制理论(社会学)
非线性系统
指数稳定性
不变(物理)
勒贝格测度
常量(计算机编程)
不变流形
应用数学
趋同(经济学)
勒贝格积分
数学分析
控制(管理)
计算机科学
物理
量子力学
人工智能
经济
数学物理
程序设计语言
经济增长
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:1996-06-01
卷期号:41 (6): 817-829
被引量:46
摘要
A classical question in adaptive control is that of convergence of the parameter estimates to constant values in the absence of persistent excitation. The author provides an affirmative answer for a class of adaptive stabilizers for nonlinear systems. Then the author studies their asymptotic behavior by considering the problem of whether the parameter estimates converge to stabilizing values-the values which would guarantee stabilization if used in a nonadaptive controller. The author approaches this problem by studying invariant manifolds and shows that except for a set of initial conditions of Lebesgue measure zero, the parameter estimates do converge to stabilizing values. Finally, the author determines a (sufficiently large) time instant after which the adaptation can be disconnected at any time without destroying the closed-loop system stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI