New Adaptive Color Quantization Method Based on Self-Organizing Maps

颜色量化 计算机科学 自组织映射 人工智能 算法 矢量量化 色空间 量化(信号处理) 像素 模式识别(心理学) 彩色图像 计算机视觉 聚类分析 图像处理 图像(数学)
作者
Chip-Hong Chang,Pengfei Xu,Rui Xiao,Thambipillai Srikanthan
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 237-249 被引量:101
标识
DOI:10.1109/tnn.2004.836543
摘要

Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wohawohaa完成签到,获得积分10
刚刚
彭蓬给彭蓬的求助进行了留言
1秒前
1秒前
实验顺利应助Gavin采纳,获得30
1秒前
吕曼完成签到,获得积分10
1秒前
晨晨晨完成签到,获得积分10
2秒前
egoistMM完成签到,获得积分10
2秒前
清心淡如水完成签到 ,获得积分10
2秒前
2秒前
冰冰大王发布了新的文献求助20
3秒前
Jasper应助修澈采纳,获得10
3秒前
霜降发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小鹿5460完成签到,获得积分10
4秒前
lylyspeechless完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
小妮子发布了新的文献求助10
5秒前
xiaoxiao完成签到,获得积分10
5秒前
5秒前
5秒前
Jiping Ni完成签到,获得积分10
5秒前
JY'完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
胡雅琴完成签到,获得积分10
7秒前
chigga发布了新的文献求助10
9秒前
subohr完成签到,获得积分10
9秒前
FBSoos发布了新的文献求助10
10秒前
坚强胡萝卜完成签到,获得积分10
10秒前
先知完成签到,获得积分10
10秒前
大方的白开水完成签到,获得积分10
10秒前
miaogm完成签到,获得积分10
10秒前
Hello应助红红采纳,获得10
11秒前
jhd发布了新的文献求助10
11秒前
斯文败类应助chigga采纳,获得10
11秒前
666发布了新的文献求助10
11秒前
hahaha完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027