Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

全身成像 背景(考古学) 动态成像 计算机科学 参数统计 标准摄取值 核医学 Pet成像 正电子发射断层摄影术 协议(科学) 生物医学工程 医学物理学 人工智能 数学 医学 图像处理 统计 图像(数学) 病理 古生物学 数字图像处理 替代医学 生物
作者
Nicolas A. Karakatsanis,Martin A. Lodge,Abdel Tahari,Yun Zhou,Richard L. Wahl,Arman Rahmim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:58 (20): 7391-7418 被引量:192
标识
DOI:10.1088/0031-9155/58/20/7391
摘要

Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐尔容发布了新的文献求助10
2秒前
打打应助wangqiqi采纳,获得10
5秒前
10秒前
婷婷大侠完成签到,获得积分10
10秒前
11秒前
13秒前
14秒前
尛森完成签到,获得积分10
14秒前
枫尽完成签到,获得积分10
16秒前
Owen应助易安采纳,获得10
16秒前
123123发布了新的文献求助10
16秒前
小景007完成签到,获得积分10
17秒前
小米完成签到,获得积分10
18秒前
顾君如完成签到 ,获得积分10
19秒前
苞米公主发布了新的文献求助10
19秒前
科研通AI2S应助不知道采纳,获得30
19秒前
19秒前
研友_VZG7GZ应助圆潘采纳,获得10
20秒前
冷艳薯片发布了新的文献求助10
24秒前
中书完成签到,获得积分10
24秒前
26秒前
赘婿应助123123采纳,获得10
26秒前
阳光海云发布了新的文献求助30
27秒前
YEEze发布了新的文献求助10
27秒前
27秒前
asd发布了新的文献求助10
27秒前
28秒前
Ava应助淡淡菠萝采纳,获得10
30秒前
不知道发布了新的文献求助30
31秒前
幽默微笑发布了新的文献求助10
32秒前
33秒前
小蘑菇应助H-China采纳,获得10
34秒前
北过完成签到,获得积分10
35秒前
阳光总在风雨后完成签到,获得积分10
35秒前
37秒前
38秒前
caixia28256完成签到,获得积分10
38秒前
高贵季节发布了新的文献求助10
39秒前
39秒前
秋秋完成签到,获得积分10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194