亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

全身成像 背景(考古学) 动态成像 计算机科学 参数统计 标准摄取值 核医学 Pet成像 正电子发射断层摄影术 协议(科学) 生物医学工程 医学物理学 人工智能 数学 医学 图像处理 统计 图像(数学) 病理 古生物学 数字图像处理 替代医学 生物
作者
Nicolas A. Karakatsanis,Martin A. Lodge,Abdel Tahari,Yun Zhou,Richard L. Wahl,Arman Rahmim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:58 (20): 7391-7418 被引量:192
标识
DOI:10.1088/0031-9155/58/20/7391
摘要

Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助青柠采纳,获得30
刚刚
yolo完成签到,获得积分10
1秒前
osteoclast完成签到,获得积分20
1秒前
温婉的凝芙完成签到 ,获得积分10
2秒前
5秒前
赵娜发布了新的文献求助10
10秒前
12秒前
姆姆没买完成签到 ,获得积分0
13秒前
15秒前
Lucas应助lucky采纳,获得10
15秒前
可靠的一手完成签到 ,获得积分10
19秒前
DD发布了新的文献求助10
20秒前
开朗的雁发布了新的文献求助10
21秒前
脑洞疼应助DD采纳,获得10
23秒前
顾矜应助赵娜采纳,获得10
24秒前
26秒前
熊猫发布了新的文献求助10
27秒前
浮游应助野性的灭龙采纳,获得10
28秒前
菜菜关注了科研通微信公众号
28秒前
lucky发布了新的文献求助10
31秒前
洁净的酬海完成签到 ,获得积分10
34秒前
Moonlight完成签到 ,获得积分10
36秒前
熊猫完成签到,获得积分10
37秒前
Jessica完成签到,获得积分10
41秒前
ding应助玉玊采纳,获得10
48秒前
dada完成签到 ,获得积分10
50秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
竹筏过海应助科研通管家采纳,获得30
52秒前
竹筏过海应助科研通管家采纳,获得30
52秒前
领导范儿应助科研通管家采纳,获得10
52秒前
Akim应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
53秒前
1分钟前
FashionBoy应助淡定的幼南采纳,获得10
1分钟前
1分钟前
小马甲应助dogshit采纳,获得10
1分钟前
余松林完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164