Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

全身成像 背景(考古学) 动态成像 计算机科学 参数统计 标准摄取值 核医学 Pet成像 正电子发射断层摄影术 协议(科学) 生物医学工程 医学物理学 人工智能 数学 医学 图像处理 统计 图像(数学) 病理 古生物学 替代医学 数字图像处理 生物
作者
Nicolas A. Karakatsanis,Martin A. Lodge,Abdel Tahari,Yun Zhou,Richard L. Wahl,Arman Rahmim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:58 (20): 7391-7418 被引量:192
标识
DOI:10.1088/0031-9155/58/20/7391
摘要

Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮尘完成签到 ,获得积分0
1秒前
优美数据线完成签到 ,获得积分10
1秒前
爱上阳光的鱼完成签到 ,获得积分10
1秒前
所所应助咚咚采纳,获得10
3秒前
5秒前
嘟嘟喂嘟嘟完成签到,获得积分10
6秒前
2012csc完成签到 ,获得积分0
7秒前
wenhao完成签到,获得积分10
7秒前
小奋青完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
baishuo完成签到,获得积分10
12秒前
杨美琪发布了新的文献求助10
13秒前
充电宝应助向北游采纳,获得10
13秒前
xiaozou55完成签到 ,获得积分10
14秒前
大力完成签到 ,获得积分10
16秒前
18秒前
zhangyuting完成签到 ,获得积分10
19秒前
kid1412完成签到 ,获得积分10
19秒前
xn201120完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
小新小新完成签到 ,获得积分10
22秒前
Dromaeotroodon完成签到,获得积分10
23秒前
江城闲鹤发布了新的文献求助10
23秒前
Singularity应助科研通管家采纳,获得10
27秒前
Singularity应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
Singularity应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
Singularity应助科研通管家采纳,获得10
27秒前
Singularity应助科研通管家采纳,获得10
27秒前
leaolf应助科研通管家采纳,获得150
27秒前
27秒前
27秒前
28秒前
Tina完成签到 ,获得积分10
31秒前
34秒前
tryagain发布了新的文献求助10
37秒前
争气完成签到 ,获得积分10
37秒前
WZH完成签到,获得积分10
39秒前
李爱国应助江城闲鹤采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966