Phase-field model for binary alloys

热力学 材料科学 热扩散率 相(物质) 领域(数学) 合金 分配系数 二进制数 巨大的潜力 凝聚态物理 物理 化学 冶金 数学 量子力学 算术 色谱法 纯数学
作者
Seong Gyoon Kim,Won Tae Kim,Toshio Suzuki
出处
期刊:Physical review 卷期号:60 (6): 7186-7197 被引量:998
标识
DOI:10.1103/physreve.60.7186
摘要

We present a phase-field model (PFM) for solidification in binary alloys, which is found from the phase-field model for a pure material by direct comparison of the variables for a pure material solidification and alloy solidification. The model appears to be equivalent with the Wheeler-Boettinger-McFadden (WBM) model [A.A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Rev. A 45, 7424 (1992)], but has a different definition of the free energy density for interfacial region. An extra potential originated from the free energy density definition in the WBM model disappears in this model. At a dilute solution limit, the model is reduced to the Tiaden et al. model [Physica D 115, 73 (1998)] for a binary alloy. A relationship between the phase-field mobility and the interface kinetics coefficient is derived at a thin-interface limit condition under an assumption of negligible diffusivity in the solid phase. For a dilute alloy, a steady-state solution of the concentration profile across the diffuse interface is obtained as a function of the interface velocity and the resultant partition coefficient is compared with the previous solute trapping model. For one dimensional steady-state solidification, where the classical sharp-interface model is exactly soluble, we perform numerical simulations of the phase-field model: At low interface velocity, the simulated results from the thin-interface PFM are in excellent agreement with the exact solutions. As the partition coefficient becomes close to unit at high interface velocities, whereas, the sharp-interface PFM yields the correct answer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baqiuzunzhe发布了新的文献求助10
1秒前
孝顺的觅风完成签到 ,获得积分10
1秒前
2秒前
Cyuan发布了新的文献求助10
2秒前
JRZ完成签到,获得积分10
3秒前
3秒前
不想晚睡完成签到,获得积分10
3秒前
4秒前
Sylvia发布了新的文献求助50
4秒前
Lia_Yee完成签到,获得积分10
4秒前
5秒前
asdfqwer发布了新的文献求助10
5秒前
可爱的稚晴完成签到,获得积分20
5秒前
进击的PhD完成签到,获得积分10
6秒前
7秒前
单纯无声完成签到 ,获得积分10
7秒前
9秒前
西西弗斯完成签到,获得积分10
11秒前
李卓航发布了新的文献求助10
13秒前
领导范儿应助甜野采纳,获得10
13秒前
13秒前
15秒前
17秒前
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
好好应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
好好应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716