材料科学
复合材料
复合数
类金刚石碳
微观结构
溅射沉积
弹性模量
扫描电子显微镜
拉曼光谱
图层(电子)
溅射
薄膜
纳米技术
光学
物理
作者
Xiaolu Pang,Huisheng Yang,Kewei Gao,Yanbin Wang,Alex A. Volinsky
标识
DOI:10.1016/j.tsf.2011.02.040
摘要
Ti/Ti-doped diamond-like carbon (DLC) and Ti/AlTiN/Ti-DLC composite coatings were deposited by magnetron sputtering on W18Cr4V high speed steel substrates. The effect of the AlTiN support layer on the properties of these composite coatings was investigated through microstructure and mechanical properties characterization, including hardness, elastic modulus, coefficient of friction and wear properties measured by scanning electron microscopy, Raman spectroscopy, scratch and ball-on-disk friction tests. Ti and AlTiN interlayers have a columnar structure with 50–80 nm grains. The hardness and elastic modulus of Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings is 25.9 ± 0.4, 222.2 ± 6.3 GPa and 19.3 ± 1, 205.6 ± 6.7 GPa, respectively. Adhesion of Ti-DLC, Ti/AlTiN/Ti-DLC and AlTiN/Ti-DLC coatings expressed as the critical lateral force is 26.5 N, 38.2 N, and 47.8 N, respectively. Substrate coefficient of friction without coatings is 0.44, and it is 0.1 for Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings. Wear resistance of Ti/AlTiN/Ti-DLC composite coatings is much higher than Ti/Ti-DLC coatings based on the wear track width of 169.8 and 73.2 μm, respectively, for the same experimental conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI