Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels.

干细胞 细胞生物学 化学 生物物理学
作者
Alice H. Huang,Brendon M. Baker,Gerard A. Ateshian,Robert L. Mauck
出处
期刊:European Cells & Materials 卷期号:24: 29-45 被引量:33
标识
DOI:10.22203/ecm.v024a03
摘要

The primary goal of cartilage tissue engineering is to recapitulate the functional properties and structural features of native articular cartilage. While there has been some success in generating near-native compressive properties, the tensile properties of cell-seeded constructs remain poor, and key features of cartilage, including inhomogeneity and anisotropy, are generally absent in these engineered constructs. Therefore, in an attempt to instill these hallmark properties of cartilage in engineered cell-seeded constructs, we designed and characterized a novel sliding contact bioreactor to recapitulate the mechanical stimuli arising from physiologic joint loading (two contacting cartilage layers). Finite element modeling of this bioreactor system showed that tensile strains were direction-dependent, while both tensile strains and fluid motion were depth-dependent and highest in the region closest to the contact surface. Short-term sliding contact of mesenchymal stem cell (MSC)seeded agarose improved chondrogenic gene expression in a manner dependent on both the axial strain applied and transforming growth factor-β supplementation. Using the optimized loading parameters derived from these short-term studies, long-term sliding contact was applied to MSC-seeded agarose constructs for 21 d. After 21 d, sliding contact significantly improved the tensile properties of MSC-seeded constructs and elicited alterations in type II collagen and proteoglycan accumulation as a function of depth; staining for these matrix molecules showed intense localization in the surface regions. These findings point to the potential of sliding contact to produce engineered cartilage constructs that begin to recapitulate the complex mechanical features of the native tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nini完成签到 ,获得积分10
2秒前
2秒前
郑是在下发布了新的文献求助10
3秒前
3秒前
孟德尔吃豌豆完成签到,获得积分10
3秒前
3秒前
4秒前
科目三应助诚心靳采纳,获得10
5秒前
梁liang完成签到,获得积分20
5秒前
6秒前
6秒前
研友_Lw7MKL发布了新的文献求助10
6秒前
Lillie完成签到,获得积分10
7秒前
8秒前
8秒前
reflux举报趣乐多求助涉嫌违规
8秒前
明理小海豚完成签到,获得积分10
8秒前
虚幻凌文发布了新的文献求助10
8秒前
9秒前
顺心迎南完成签到,获得积分20
9秒前
Lucas应助lingjiaxin采纳,获得10
9秒前
深情的嘉熙完成签到,获得积分10
10秒前
10秒前
yangyang发布了新的文献求助10
11秒前
peipei发布了新的文献求助10
11秒前
11秒前
12秒前
默默水之发布了新的文献求助10
12秒前
13秒前
13秒前
罗汉发布了新的文献求助10
13秒前
13秒前
你猜我猜不猜你在猜完成签到,获得积分10
13秒前
15秒前
Akim应助心海采纳,获得10
15秒前
白桦林泪发布了新的文献求助30
16秒前
dddd完成签到,获得积分10
16秒前
16秒前
hhhh发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331