复合材料
材料科学
差示扫描量热法
复合数
聚乙烯
扫描电子显微镜
超高分子量聚乙烯
纤维
电介质
碳纤维
物理
光电子学
热力学
作者
Qingyun Chen,Ying Xi,Yuezhen Bin,Masaru Matsuo
摘要
Abstract Carbon fiber (CF) filled low‐molecular‐weight polyethylene (LMWPE) and ultra‐high molecular weight polyethylene (UHMWPE) composites were prepared by the gelation from solution and the kneading in the melting state. The content of carbon fibers was fixed to be 23.5 vol %. The resistivity, positive temperature coefficient (PTC), and dielectric behaviors of the composites became more pronounced with increasing content of LMWPE with much higher thermal expansion than that of UHMWPE. The PTC effect became most significant, when the blend ratio of LMWPE to UHMWPE was 9/1. Beyond 9/1, the PTC effect was less pronounced. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) revealed that the UHMWPE and LMWPE chains within the composite crystallized independently by gelation from solution and were virtually unaffected by the presence of carbon fibers. Consequently, it was confirmed that carbon fibers selectively were localized in the mixed region of LMWPE and UHMWPE for the composite (3/1 and 6/1) and mainly in the region of LMWPE for the 9/1, 12/1, and 15/1 composites. This indicated that the content of carbon fibers within LMWPE region was the highest for the 9/1 composite and the 9/1 composite provides the most significant PTC effect. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 359–369, 2008
科研通智能强力驱动
Strongly Powered by AbleSci AI