寡霉素
生物化学
抗霉素A
叶绿体
生物
水杨酸
氧化磷酸化
光合作用
苹果酸脱氢酶
DCMU公司
塑料醌
酶
电子传输链
光系统II
ATP酶
类囊体
基因
作者
Kollipara Padmasree,Agepati S. Raghavendra
标识
DOI:10.1034/j.1399-3054.2001.1120417.x
摘要
The patterns of light activation of 4 chloroplastic enzymes were examined in mesophyll protoplasts of pea ( Pisum sativum ) in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM, inhibitor of alternative pathway). The results were compared with those of DCMU (inhibitor of photosynthetic electron transport). The light activation of NADP glyceraldehyde‐3‐phosphate dehydrogenase (NADP‐GAPDH), fructose‐1,6‐bisphosphatase (FBPase), phosphoribulokinase (PRK) (enzymes of the Calvin cycle) and NADP malate dehydrogenase (NADP‐MDH) (reflects chloroplast redox state) was more pronounced at limiting CO 2 (0.1 m M NaHCO 3 ) than that at optimal CO 2 (1.0 m M NaHCO 3 ). SHAM decreased markedly (up to 33%) the light activation of all 4 enzymes, while antimycin A or oligomycin exerted only a limited effect (<10% decrease). Antimycin A or oligomycin or SHAM had no significant effect on light activation of these 4 enzymes in isolated chloroplasts. However, DCMU caused a remarkable decrease in light activation of enzymes in both protoplasts (up to 78%) and chloroplasts (up to 69%). These results suggest that the restriction of alternative pathway of mitochondrial metabolism results in a marked decrease in the light activation of key chloroplastic enzymes in mesophyll protoplasts but not in isolated chloroplasts. Such a decrease in the light activation of enzymes could be also a secondary feedback effect because of the restriction on carbon assimilation.
科研通智能强力驱动
Strongly Powered by AbleSci AI