LNCaP公司
前列腺癌
污渍
细胞生长
癌症研究
生物
RNA干扰
分子生物学
癌基因
细胞
转染
谷氨酸羧肽酶Ⅱ
细胞周期
细胞培养
癌症
基因
核糖核酸
生物化学
遗传学
标识
DOI:10.3892/ijo.2012.1358
摘要
PSM-E is a newly discovered alternatively spliced variant of prostate-specific membrane antigen (PSMA). In the current study, its role on the proliferation, invasiveness and migration in prostate cancer cell lines was analyzed. PSM-E and PSMA (as a comparison) eukaryotic expression vectors pcDNA3.0/PSM-E and pcDNA3.0/PSMA were constructed, validated by RT-PCR and Western blotting, and PSMA/PSM-E overexpression PC-3 cell models were built. Gene interference was used to block PSMA and the expression of its splice variants in LNCap cells. Three shRNA fragments were synthesized against PSMA, cloned into the vector pSilencer 2.1-U6-neo, their interference effect was evaluated by RT-PCR and Western blotting, and pSilencer 2.1-U6-neo‑shRNA3 (named p‑shRNA3) was chosen in further analyses. Growth curves were drawn to observe the proliferation change, which showed that PSM-E had the potential to suppress proliferation (P<0.05), but no significant change was observed in PSMA/PC-3 cells and in PSMA/PSM-E interfering LNCap cells (P>0.05). Cross-river test showed that the migration speeds of PSM-E/PC-3 and PSMA/PC-3 were both significantly slower than the vector negative control, and faster in p-shRNA3 interfering LNCap cells compared with its vector negative control (P<0.05), and no significant difference existed between PSM-E/PC-3 and PSMA/PC-3 (P>0.05). Transwell assay showed that the invasive cells of both PSMA/PC-3 and PSM-E/PC-3 were fewer compared to the vector negative control (P<0.05), and the invasive suppression effect of PSM-E was weaker than PSMA (P<0.05), and accordingly, invasiveness of interfering LNCaP cells was enhanced compared with the vector negative control (P<0.05). These results showed that PSM-E could suppress proliferation, migration and invasiveness of prostate cancer cells. Its suppression effect on cell proliferation is stronger compared to PSMA and the suppression effect on invasiveness is weaker than that of PSMA.
科研通智能强力驱动
Strongly Powered by AbleSci AI