膜
材料科学
电解质
化学工程
阳离子聚合
分层(地质)
聚合物
离子交换
催化作用
质子交换膜燃料电池
功率密度
共价键
铵
电极
离子
化学
高分子化学
复合材料
功率(物理)
有机化学
物理化学
热力学
古生物学
生物化学
俯冲
物理
生物
工程类
构造学
作者
Xian Liang,Xiaolin Ge,Yubin He,XU Mai,Muhammad A. Shehzad,Fangmeng Sheng,Rachida Bance-Soualhi,Jianjun Zhang,Weisheng Yu,Zijuan Ge,Chengpeng Wei,Wanjie Song,Jinqing Peng,John R. Varcoe,Liang Wu,Tongwen Xu
标识
DOI:10.1002/advs.202102637
摘要
Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2 ) and zero emissions of greenhouse gas (CO2 ). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long-term stabilities. Here, a 3D-interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl-terminated bi-cationic quaternary-ammonium-based polyelectrolyte is employed as both the anionomer in the anion-exchange membrane (AEM) and catalyst layers. A quaternary-ammonium-containing covalently locked interface is formed by thermally induced inter-crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D-zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2 /O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm-2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm-2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI