材料科学
电导率
电解质
结晶
陶瓷
电化学
共晶体系
快离子导体
离子电导率
离子
化学工程
无机化学
化学
合金
物理化学
电极
有机化学
冶金
工程类
作者
Huayu Qiu,Rongxiang Hu,Xiaofan Du,Zhou Chen,Jingwen Zhao,Guoli Lu,Meifang Jiang,Qingyu Kong,Yiyuan Yan,Junzhe Du,Xinhong Zhou,Guanglei Cui
标识
DOI:10.1002/anie.202113086
摘要
Solid-state zinc (Zn) batteries offer a new candidate for emerging applications sensitive to volume, safety and cost. However, current solid polymeric or ceramic electrolyte structures remain poorly conductive for the divalent Zn2+ , especially at room temperature. Constructing a heterogeneous interface which allows Zn2+ percolation is a viable option, but this is rarely involved in multivalent systems. Herein, we construct a solid Zn2+ -ion conductor by inducing crystallization of tailored eutectic liquids formed by organic Zn salts and bipolar ligands. High-entropy eutectic-networks weaken the ion-association and form interfacial Zn2+ -percolated channels on the nucleator surfaces, resulting in a solid crystal with exceptional selectivity for Zn2+ transport (t Zn2+ =0.64) and appreciable Zn2+ conductivity (σ Zn2+ =3.78×10-5 S cm-1 at 30 °C, over 2 orders of magnitude higher than conventional polymers), and finally enabling practical ambient-temperature Zn/V2 O5 metal solid cells. This design principle leveraged by the eutectic solidification affords new insights on the multivalent solid electrochemistry suffering from slow ion migration.
科研通智能强力驱动
Strongly Powered by AbleSci AI