Mechanical compression enhances ciliary beating through cytoskeleton remodeling in human nasal epithelial cells

细胞骨架 纤毛 细胞生物学 上皮 粘液 粘液纤毛清除率 鼻粘膜 肌动蛋白细胞骨架 呼吸粘膜 呼吸上皮 材料科学 病理 生物 医学 细胞 内科学 生态学 遗传学
作者
Seong Gyu Lee,Sang‐Nam Lee,Junki Baek,Joo‐Heon Yoon,Hyungsuk Lee
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:128: 346-356 被引量:8
标识
DOI:10.1016/j.actbio.2021.04.030
摘要

Nasal inflammatory diseases, including nasal polyps and acute/chronic sinusitis, are characterized by impaired mucociliary clearance and eventually inflammation and infection. Contact of nasal polyps with adjacent nasal mucosa or stagnated mucus within the maxillary sinus produces compressive mechanical stresses on the apical surface of epithelium which can induce cytoskeleton remodeling in epithelial cells. In this study, we hypothesized that compressive stress modulates ciliary beating by altering the mechanical properties of the cytoskeleton of ciliated cell basal bodies. For the primary human nasal epithelial cells, we found that the applied compressive stress higher than the critical value of 1.0 kPa increased the stroke speed of cilia leading to the enhancement of ciliary beating frequency and mucociliary transportability. Immunostained images of the cytoskeleton showed reorganization and compactness of the actin filaments in the presence of compressive stress. Analysis of beating trajectory with the computational modeling for ciliary beating revealed that the stroke speed of cilium increased as the relative elasticity to viscosity of the surrounding cytoskeleton increases. These results suggest that the compressive stress on epithelial cells increases the ciliary beating speed through cytoskeleton remodeling to prevent mucus stagnation at the early stage of airway obstruction. Our study provides an insight into the defensive mechanism of airway epithelium against pathological conditions. Cilia dynamics of the nasal epithelium is critical for not only maintaining normal breathing but preventing inflammatory diseases. It has been shown that mechanical compressive stresses can alter the shape and phenotype of epithelial cells. However, the effect of compressive stress on cilia dynamics is unclear. In this study, we demonstrated that the oscillation speed of cilia in human nasal epithelial cells was increased by the applied compressive stress experimentally. The computational simulation revealed that the change of ciliary beating dynamics was attributed to the viscoelastic properties of the reorganized cytoskeleton in response to compressive stress. Our results will be beneficial in understanding the defensive mechanism of airway epithelium against pathological conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈尼妞妞122完成签到,获得积分10
刚刚
Radish完成签到 ,获得积分10
1秒前
1秒前
大胆遥发布了新的文献求助10
2秒前
义气珩发布了新的文献求助10
2秒前
Lxxx_7发布了新的文献求助10
2秒前
万能图书馆应助Ck采纳,获得10
3秒前
繁星与北斗完成签到,获得积分10
3秒前
脑洞疼应助sai采纳,获得10
3秒前
丘比特应助xiaoziyi666采纳,获得10
3秒前
wanci应助我行我素采纳,获得10
4秒前
marinemiao发布了新的文献求助10
4秒前
111完成签到 ,获得积分10
4秒前
无辜黑夜完成签到,获得积分10
5秒前
6秒前
今夜不设防完成签到,获得积分10
6秒前
李健应助木子采纳,获得10
7秒前
爆米花发布了新的文献求助10
7秒前
7秒前
7秒前
可靠的老鼠完成签到,获得积分10
8秒前
落寞依珊应助master-f采纳,获得10
8秒前
wbh发布了新的文献求助10
9秒前
田様应助hu970采纳,获得10
9秒前
科研通AI2S应助钟是一梦采纳,获得10
9秒前
zzz完成签到,获得积分20
10秒前
好玩和有趣完成签到,获得积分10
10秒前
脂蛋白抗原完成签到,获得积分10
10秒前
10秒前
10秒前
虫虫完成签到,获得积分10
10秒前
11秒前
11秒前
喜悦的向珊完成签到,获得积分10
11秒前
11秒前
科研狗发布了新的文献求助10
11秒前
清爽绿凝发布了新的文献求助10
11秒前
11秒前
大个应助佰斯特威采纳,获得10
12秒前
JingP完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740