Mechanical compression enhances ciliary beating through cytoskeleton remodeling in human nasal epithelial cells

细胞骨架 纤毛 细胞生物学 上皮 粘液 粘液纤毛清除率 鼻粘膜 肌动蛋白细胞骨架 呼吸粘膜 呼吸上皮 材料科学 病理 生物 医学 细胞 内科学 生态学 遗传学
作者
Seong Gyu Lee,Sang‐Nam Lee,Junki Baek,Joo‐Heon Yoon,Hyungsuk Lee
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:128: 346-356 被引量:10
标识
DOI:10.1016/j.actbio.2021.04.030
摘要

Nasal inflammatory diseases, including nasal polyps and acute/chronic sinusitis, are characterized by impaired mucociliary clearance and eventually inflammation and infection. Contact of nasal polyps with adjacent nasal mucosa or stagnated mucus within the maxillary sinus produces compressive mechanical stresses on the apical surface of epithelium which can induce cytoskeleton remodeling in epithelial cells. In this study, we hypothesized that compressive stress modulates ciliary beating by altering the mechanical properties of the cytoskeleton of ciliated cell basal bodies. For the primary human nasal epithelial cells, we found that the applied compressive stress higher than the critical value of 1.0 kPa increased the stroke speed of cilia leading to the enhancement of ciliary beating frequency and mucociliary transportability. Immunostained images of the cytoskeleton showed reorganization and compactness of the actin filaments in the presence of compressive stress. Analysis of beating trajectory with the computational modeling for ciliary beating revealed that the stroke speed of cilium increased as the relative elasticity to viscosity of the surrounding cytoskeleton increases. These results suggest that the compressive stress on epithelial cells increases the ciliary beating speed through cytoskeleton remodeling to prevent mucus stagnation at the early stage of airway obstruction. Our study provides an insight into the defensive mechanism of airway epithelium against pathological conditions. Cilia dynamics of the nasal epithelium is critical for not only maintaining normal breathing but preventing inflammatory diseases. It has been shown that mechanical compressive stresses can alter the shape and phenotype of epithelial cells. However, the effect of compressive stress on cilia dynamics is unclear. In this study, we demonstrated that the oscillation speed of cilia in human nasal epithelial cells was increased by the applied compressive stress experimentally. The computational simulation revealed that the change of ciliary beating dynamics was attributed to the viscoelastic properties of the reorganized cytoskeleton in response to compressive stress. Our results will be beneficial in understanding the defensive mechanism of airway epithelium against pathological conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fatcat完成签到,获得积分10
刚刚
acarbose完成签到,获得积分10
刚刚
晓雯完成签到,获得积分10
1秒前
shhoing应助guo采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
xiaofenzi完成签到,获得积分10
5秒前
文献小白完成签到 ,获得积分10
5秒前
弥生发布了新的文献求助10
8秒前
受伤问凝完成签到 ,获得积分10
9秒前
科研通AI6应助唠叨的夏山采纳,获得10
11秒前
xmy完成签到,获得积分10
13秒前
14秒前
钟迪完成签到,获得积分10
15秒前
NO发布了新的文献求助10
19秒前
岁月如歌完成签到 ,获得积分0
20秒前
浮晨完成签到,获得积分10
21秒前
弥生完成签到,获得积分10
21秒前
Yang22完成签到,获得积分10
27秒前
herpes完成签到 ,获得积分10
28秒前
28秒前
31秒前
阔达如柏完成签到,获得积分10
31秒前
刘子怡完成签到 ,获得积分10
32秒前
懵懂的子骞完成签到 ,获得积分10
33秒前
xiaoD完成签到 ,获得积分10
35秒前
35秒前
酒酿是也完成签到 ,获得积分10
35秒前
111完成签到,获得积分10
36秒前
Bella完成签到 ,获得积分10
39秒前
和谐的醉山完成签到,获得积分0
43秒前
123完成签到,获得积分10
45秒前
在努力完成签到 ,获得积分10
46秒前
liuye0202完成签到,获得积分10
48秒前
50秒前
量子星尘发布了新的文献求助10
52秒前
willlee完成签到 ,获得积分10
53秒前
优秀棒棒糖完成签到 ,获得积分10
54秒前
55秒前
lingling完成签到 ,获得积分10
55秒前
大大完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539208
求助须知:如何正确求助?哪些是违规求助? 4625972
关于积分的说明 14597218
捐赠科研通 4566810
什么是DOI,文献DOI怎么找? 2503620
邀请新用户注册赠送积分活动 1481554
关于科研通互助平台的介绍 1453094