Mechanical compression enhances ciliary beating through cytoskeleton remodeling in human nasal epithelial cells

细胞骨架 纤毛 细胞生物学 上皮 粘液 粘液纤毛清除率 鼻粘膜 肌动蛋白细胞骨架 呼吸粘膜 呼吸上皮 材料科学 病理 生物 医学 细胞 内科学 生态学 遗传学
作者
Seong Gyu Lee,Sang‐Nam Lee,Junki Baek,Joo‐Heon Yoon,Hyungsuk Lee
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:128: 346-356 被引量:9
标识
DOI:10.1016/j.actbio.2021.04.030
摘要

Nasal inflammatory diseases, including nasal polyps and acute/chronic sinusitis, are characterized by impaired mucociliary clearance and eventually inflammation and infection. Contact of nasal polyps with adjacent nasal mucosa or stagnated mucus within the maxillary sinus produces compressive mechanical stresses on the apical surface of epithelium which can induce cytoskeleton remodeling in epithelial cells. In this study, we hypothesized that compressive stress modulates ciliary beating by altering the mechanical properties of the cytoskeleton of ciliated cell basal bodies. For the primary human nasal epithelial cells, we found that the applied compressive stress higher than the critical value of 1.0 kPa increased the stroke speed of cilia leading to the enhancement of ciliary beating frequency and mucociliary transportability. Immunostained images of the cytoskeleton showed reorganization and compactness of the actin filaments in the presence of compressive stress. Analysis of beating trajectory with the computational modeling for ciliary beating revealed that the stroke speed of cilium increased as the relative elasticity to viscosity of the surrounding cytoskeleton increases. These results suggest that the compressive stress on epithelial cells increases the ciliary beating speed through cytoskeleton remodeling to prevent mucus stagnation at the early stage of airway obstruction. Our study provides an insight into the defensive mechanism of airway epithelium against pathological conditions. Cilia dynamics of the nasal epithelium is critical for not only maintaining normal breathing but preventing inflammatory diseases. It has been shown that mechanical compressive stresses can alter the shape and phenotype of epithelial cells. However, the effect of compressive stress on cilia dynamics is unclear. In this study, we demonstrated that the oscillation speed of cilia in human nasal epithelial cells was increased by the applied compressive stress experimentally. The computational simulation revealed that the change of ciliary beating dynamics was attributed to the viscoelastic properties of the reorganized cytoskeleton in response to compressive stress. Our results will be beneficial in understanding the defensive mechanism of airway epithelium against pathological conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助超级小熊猫采纳,获得10
1秒前
小马过河发布了新的文献求助10
1秒前
1秒前
传奇3应助Hqq12采纳,获得10
2秒前
XLY发布了新的文献求助10
5秒前
啊啊发布了新的文献求助10
6秒前
李y梅子发布了新的文献求助10
7秒前
成熟稳重痴情完成签到,获得积分10
9秒前
9秒前
9秒前
小马过河完成签到,获得积分10
10秒前
Sylvia完成签到,获得积分10
10秒前
10秒前
路漫漫123完成签到,获得积分10
11秒前
cuicui完成签到,获得积分10
12秒前
搜集达人应助小马过河采纳,获得10
13秒前
Bigbiglei完成签到,获得积分10
13秒前
GALAXY发布了新的文献求助10
14秒前
15秒前
陶瓷小罐完成签到 ,获得积分10
15秒前
16秒前
16秒前
归尘发布了新的文献求助10
17秒前
CC发布了新的文献求助10
17秒前
杨欢完成签到,获得积分10
17秒前
ada发布了新的文献求助30
18秒前
梅子酒发布了新的文献求助10
21秒前
Joanna发布了新的文献求助10
21秒前
板凳发布了新的文献求助10
21秒前
罗晓倩发布了新的文献求助10
22秒前
22秒前
漂亮幻莲完成签到,获得积分10
24秒前
24秒前
24秒前
桐桐应助板凳采纳,获得10
26秒前
漂亮幻莲发布了新的文献求助10
27秒前
slotus发布了新的文献求助10
28秒前
研友_564485完成签到,获得积分10
28秒前
大气的玉米完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710