Development and Validation of an Individualized Immune Prognostic Signature in 3005 Ovarian Cancer Patients

卵巢癌 肿瘤科 签名(拓扑) 免疫系统 医学 内科学 癌症 免疫学 几何学 数学
作者
Sipeng Shen,Guanrong Wang,Ruyang Zhang,Yang Zhao,Yongyue Wei,Feng Chen
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3209541
摘要

Ovarian cancer (OV) is the most lethal gynecological cancer in women. We aim to develop a robust, individualized immune prognostic signature that can stratify and predict overall survival for ovarian cancer. The gene expression profiles of ovarian cancer tumor tissue samples were collected from 20 public cohorts, including 3005 cases totally. We used the immune genes provided by ImmPort database to develop an immune-based prognostic signature for OV (IPSOV) in the training set (n = 409). The signature was validated in seven independent validation sets (n = 606, 519, 634, 415, 194, 128, 100). Further, we compared IPSOV with nine reported ovarian cancer prognostic signatures as well as the clinical characteristics including stage, grade and debulking status. The IPSOV significantly stratified patients into low- and high-immune risk groups in the training set (HR = 2.52; 95% CI: 1.92-3.30; P = 1.88×10-11) and in the 7 validation sets (HR range: 1.70 [95%CI: 1.32-2.10; P = 1.40×10-5] to 2.20 [95%CI: 1.24-3.91; P = 0.007]). Significant interaction effects were identified for IPSOV and platinum, Gemcitabine and Topotecan chemotherapy. The IPSOV achieved the highest mean C-index (0.631) compared with the other signatures (0.516 to 0.602) and clinical characteristics (0.550 to 0.576). Further, we integrated IPSOV with stage, grade and debulking, which showed improved prognostic accuracy than clinical characteristics only. The proposed clinical-immune signature is a promising biomarker for estimating overall survival in ovarian cancer. Prospective studies are needed to further validate its analytical accuracy and test the clinical utility. Funding: This study was supported by the National Natural Science Foundation of China (81530088 and 81473070 to F.C.), National Key Research and Development Program of China (2016YFE0204900 to F.C.), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (14KJA310002 to F.C.). Conflict of Interest: None. Ethical Approval Statement: This study has been proved by the Nanjing Medical University institutional committee.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renjiu完成签到,获得积分10
刚刚
刚刚
rrr完成签到,获得积分10
刚刚
JACK完成签到,获得积分10
1秒前
科研欣路完成签到,获得积分10
1秒前
勿庸完成签到,获得积分10
1秒前
1秒前
王乐多完成签到 ,获得积分10
1秒前
锅里有两条鱼完成签到 ,获得积分10
1秒前
2秒前
姚断天发布了新的文献求助10
2秒前
CBY发布了新的文献求助10
2秒前
庞洋发布了新的文献求助10
2秒前
2秒前
hetao286发布了新的文献求助10
3秒前
zzc完成签到 ,获得积分10
3秒前
蔺建薇完成签到,获得积分10
3秒前
whatever举报求助违规成功
3秒前
Hungrylunch举报求助违规成功
3秒前
幕帆举报求助违规成功
3秒前
3秒前
3秒前
lanjq兰坚强完成签到,获得积分10
3秒前
夏昼关注了科研通微信公众号
4秒前
4秒前
RONG发布了新的文献求助10
4秒前
艺玲发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
4秒前
橘络完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
研友_VZG7GZ应助gaos采纳,获得10
5秒前
内向青文发布了新的文献求助10
5秒前
克林沙星完成签到,获得积分10
5秒前
6秒前
杜嘟嘟发布了新的文献求助10
6秒前
kento驳回了欢欢应助
6秒前
7秒前
Ava应助李双艳采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740