Graph Contrastive Clustering

聚类分析 计算机科学 人工智能 判别式 模糊聚类 相关聚类 图形 模式识别(心理学) 机器学习 自然语言处理 数据挖掘 理论计算机科学
作者
Huasong Zhong,Jianlong Wu,Dong Feng,Jianqiang Huang,Minghua Deng,Liqiang Nie,Zhouchen Lin,Xian-Sheng Hua
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2104.01429
摘要

Recently, some contrastive learning methods have been proposed to simultaneously learn representations and clustering assignments, achieving significant improvements. However, these methods do not take the category information and clustering objective into consideration, thus the learned representations are not optimal for clustering and the performance might be limited. Towards this issue, we first propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering~(GCC) method. Different from basic contrastive clustering that only assumes an image and its augmentation should share similar representation and clustering assignments, we lift the instance-level consistency to the cluster-level consistency with the assumption that samples in one cluster and their augmentations should all be similar. Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features. On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments. Both of them incorporate the latent category information to reduce the intra-cluster variance while increasing the inter-cluster variance. Experiments on six commonly used datasets demonstrate the superiority of our proposed approach over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的访文完成签到,获得积分10
刚刚
守仁则阳明完成签到 ,获得积分10
1秒前
2秒前
2秒前
无误发布了新的文献求助10
2秒前
3秒前
爆米花应助honey采纳,获得10
3秒前
隐形曼青应助moumou采纳,获得20
4秒前
神勇的荟完成签到 ,获得积分10
4秒前
康康完成签到 ,获得积分10
5秒前
JOEY发布了新的文献求助50
6秒前
6秒前
6秒前
7秒前
可爱的函函应助CY采纳,获得10
7秒前
8秒前
贪玩霆发布了新的文献求助10
9秒前
9秒前
一坨发布了新的文献求助30
10秒前
10秒前
10秒前
美琦完成签到,获得积分10
11秒前
我睡觉的时候不困完成签到,获得积分10
11秒前
才露尖尖角完成签到,获得积分10
12秒前
小酒迟疑完成签到,获得积分10
12秒前
zzb发布了新的文献求助10
12秒前
spy发布了新的文献求助10
14秒前
14秒前
茜茜哥哥发布了新的文献求助10
15秒前
15秒前
六月的石头关注了科研通微信公众号
16秒前
万能图书馆应助leez采纳,获得10
16秒前
16秒前
CipherSage应助小阳采纳,获得10
18秒前
CY发布了新的文献求助10
19秒前
嘎吱脆发布了新的文献求助10
20秒前
23秒前
wq完成签到,获得积分10
23秒前
24秒前
新威宝贝完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020