Graph Contrastive Clustering

聚类分析 计算机科学 人工智能 判别式 模糊聚类 相关聚类 图形 模式识别(心理学) 机器学习 自然语言处理 数据挖掘 理论计算机科学
作者
Huasong Zhong,Jianlong Wu,Dong Feng,Jianqiang Huang,Minghua Deng,Liqiang Nie,Zhouchen Lin,Xian-Sheng Hua
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2104.01429
摘要

Recently, some contrastive learning methods have been proposed to simultaneously learn representations and clustering assignments, achieving significant improvements. However, these methods do not take the category information and clustering objective into consideration, thus the learned representations are not optimal for clustering and the performance might be limited. Towards this issue, we first propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering~(GCC) method. Different from basic contrastive clustering that only assumes an image and its augmentation should share similar representation and clustering assignments, we lift the instance-level consistency to the cluster-level consistency with the assumption that samples in one cluster and their augmentations should all be similar. Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features. On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments. Both of them incorporate the latent category information to reduce the intra-cluster variance while increasing the inter-cluster variance. Experiments on six commonly used datasets demonstrate the superiority of our proposed approach over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙子完成签到,获得积分10
刚刚
天天快乐应助痴情的雁易采纳,获得10
刚刚
lidayu完成签到,获得积分10
刚刚
3秒前
半胱氨酸完成签到,获得积分10
3秒前
3秒前
fanyy完成签到,获得积分10
4秒前
半胱氨酸发布了新的文献求助10
5秒前
6秒前
7秒前
Sophia完成签到,获得积分10
7秒前
8秒前
niuniu发布了新的文献求助10
9秒前
Ethanyoyo0917完成签到,获得积分10
9秒前
kiki完成签到 ,获得积分10
10秒前
10秒前
daD发布了新的文献求助10
10秒前
11秒前
隐形曼青应助小李博士采纳,获得10
12秒前
77发布了新的文献求助10
13秒前
13秒前
大模型应助Arthur采纳,获得10
14秒前
14秒前
方羽应助安静的尔岚采纳,获得10
15秒前
17秒前
orixero应助niuniu采纳,获得10
17秒前
今后应助内向的傲云采纳,获得10
17秒前
田様应助站住浩子采纳,获得10
18秒前
追梦完成签到,获得积分10
19秒前
20秒前
科研小白发布了新的文献求助10
22秒前
22秒前
NexusExplorer应助MJQ采纳,获得20
23秒前
23秒前
daD完成签到,获得积分10
24秒前
马婷发布了新的文献求助10
25秒前
科研通AI2S应助典雅洪纲采纳,获得10
25秒前
靖雁发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351364
求助须知:如何正确求助?哪些是违规求助? 2976842
关于积分的说明 8676836
捐赠科研通 2657999
什么是DOI,文献DOI怎么找? 1455355
科研通“疑难数据库(出版商)”最低求助积分说明 673836
邀请新用户注册赠送积分活动 664315