In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling

刀具磨损 机械加工 过程(计算) 刀具 GSM演进的增强数据速率 随机建模 鉴定(生物学) 滤波器(信号处理) 机械工程 计算机科学 工程类 数学 人工智能 统计 植物 生物 操作系统 计算机视觉
作者
Xuewei Zhang,Tianbiao Yu,Pengfei Xu,Ji Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:164: 108233-108233 被引量:50
标识
DOI:10.1016/j.ymssp.2021.108233
摘要

Micro milling aims to manufacture miniature structures with high quality and complex features, and the stochastic time-varying tool wear is a crucial factor which has great influence on machining quality and efficiency of micro milling process. To improve the precision of machining and sustainability of micro cutting tools, the in-process tool wear conditions should be identified and updated ahead of time. In this work, an improved integrated estimation method is proposed based on the long short-term memory (LSTM) network and particle filter (PF) algorithm to predict the stochastic tool wear values. The integrated PF-LSTM identification methodology is developed to predict the in-process stochastic tool wear progression on the basis of the historical measurement data. With the estimation of in-process stochastic tool wear, the cutting force model is modified, in which the influence of tool run-out and the trochoidal trajectory of cutting edge are also considered. The proposed integrated estimation method of in-process stochastic tool wear and the modified cutting force model were validated by the micro milling experiments with workpiece material Al6061. It can be seen from the comparison results that the availability and sustainability of micro cutting tool have been improved, and the prediction accuracy also could be increased by 3.4% compared with that without considering the influence of tool wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气天真完成签到,获得积分10
刚刚
Owen应助愉快的老五采纳,获得10
刚刚
深情安青应助kiki134采纳,获得10
刚刚
电闪发布了新的文献求助10
1秒前
1秒前
santares完成签到,获得积分10
1秒前
飞快的稚晴完成签到,获得积分10
1秒前
dsfsd发布了新的文献求助10
2秒前
bx完成签到,获得积分10
3秒前
Orange应助fang采纳,获得10
4秒前
吾将上下而求索完成签到 ,获得积分10
4秒前
乐观海云完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
老曹发布了新的文献求助10
6秒前
6秒前
丘比特应助saberynn采纳,获得10
7秒前
7秒前
甲乙完成签到,获得积分10
7秒前
7秒前
7秒前
果实发布了新的文献求助10
7秒前
暮寻屿苗完成签到 ,获得积分10
8秒前
哈哈哈哈哈完成签到,获得积分10
8秒前
Uki完成签到,获得积分10
8秒前
8秒前
就学一点点完成签到,获得积分10
8秒前
9秒前
好了完成签到,获得积分10
9秒前
wxy发布了新的文献求助10
9秒前
Ava应助甜美无剑采纳,获得10
9秒前
博修发布了新的文献求助10
9秒前
10秒前
11秒前
不安忆寒完成签到,获得积分10
12秒前
史小霜发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149