亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling

刀具磨损 机械加工 过程(计算) 刀具 GSM演进的增强数据速率 随机建模 鉴定(生物学) 滤波器(信号处理) 机械工程 计算机科学 工程类 数学 人工智能 操作系统 统计 生物 植物 计算机视觉
作者
Xuewei Zhang,Tianbiao Yu,Pengfei Xu,Ji Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:164: 108233-108233 被引量:50
标识
DOI:10.1016/j.ymssp.2021.108233
摘要

Micro milling aims to manufacture miniature structures with high quality and complex features, and the stochastic time-varying tool wear is a crucial factor which has great influence on machining quality and efficiency of micro milling process. To improve the precision of machining and sustainability of micro cutting tools, the in-process tool wear conditions should be identified and updated ahead of time. In this work, an improved integrated estimation method is proposed based on the long short-term memory (LSTM) network and particle filter (PF) algorithm to predict the stochastic tool wear values. The integrated PF-LSTM identification methodology is developed to predict the in-process stochastic tool wear progression on the basis of the historical measurement data. With the estimation of in-process stochastic tool wear, the cutting force model is modified, in which the influence of tool run-out and the trochoidal trajectory of cutting edge are also considered. The proposed integrated estimation method of in-process stochastic tool wear and the modified cutting force model were validated by the micro milling experiments with workpiece material Al6061. It can be seen from the comparison results that the availability and sustainability of micro cutting tool have been improved, and the prediction accuracy also could be increased by 3.4% compared with that without considering the influence of tool wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
19秒前
elle发布了新的文献求助10
23秒前
充电宝应助elle采纳,获得10
33秒前
elle完成签到,获得积分20
39秒前
franklin完成签到,获得积分20
48秒前
YYYY完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
1分钟前
小学生的练习簿完成签到,获得积分10
1分钟前
2分钟前
xx发布了新的文献求助10
2分钟前
2分钟前
2分钟前
小马甲应助泡面小猪采纳,获得10
2分钟前
蟹黄小笼包完成签到,获得积分10
3分钟前
3分钟前
LZL完成签到,获得积分10
3分钟前
Akim应助weining采纳,获得10
3分钟前
4分钟前
hyhyhyhy发布了新的文献求助10
4分钟前
weining发布了新的文献求助10
4分钟前
楠茸完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
泡面小猪发布了新的文献求助10
4分钟前
www发布了新的文献求助10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
www完成签到,获得积分20
5分钟前
fendy完成签到,获得积分0
5分钟前
打打应助科研通管家采纳,获得30
5分钟前
5分钟前
Leo完成签到 ,获得积分10
5分钟前
明理囧完成签到 ,获得积分10
5分钟前
sirius应助Ni采纳,获得10
5分钟前
桐桐应助hyhyhyhy采纳,获得10
6分钟前
小小猪完成签到,获得积分10
6分钟前
KK完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989