In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling

刀具磨损 机械加工 过程(计算) 刀具 GSM演进的增强数据速率 随机建模 鉴定(生物学) 滤波器(信号处理) 机械工程 计算机科学 工程类 数学 人工智能 操作系统 统计 生物 植物 计算机视觉
作者
Xuewei Zhang,Tianbiao Yu,Pengfei Xu,Ji Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:164: 108233-108233 被引量:50
标识
DOI:10.1016/j.ymssp.2021.108233
摘要

Micro milling aims to manufacture miniature structures with high quality and complex features, and the stochastic time-varying tool wear is a crucial factor which has great influence on machining quality and efficiency of micro milling process. To improve the precision of machining and sustainability of micro cutting tools, the in-process tool wear conditions should be identified and updated ahead of time. In this work, an improved integrated estimation method is proposed based on the long short-term memory (LSTM) network and particle filter (PF) algorithm to predict the stochastic tool wear values. The integrated PF-LSTM identification methodology is developed to predict the in-process stochastic tool wear progression on the basis of the historical measurement data. With the estimation of in-process stochastic tool wear, the cutting force model is modified, in which the influence of tool run-out and the trochoidal trajectory of cutting edge are also considered. The proposed integrated estimation method of in-process stochastic tool wear and the modified cutting force model were validated by the micro milling experiments with workpiece material Al6061. It can be seen from the comparison results that the availability and sustainability of micro cutting tool have been improved, and the prediction accuracy also could be increased by 3.4% compared with that without considering the influence of tool wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jixuchance完成签到,获得积分10
刚刚
liriyii发布了新的文献求助10
刚刚
花花发布了新的文献求助10
1秒前
1秒前
阿炳妹妹发布了新的文献求助10
1秒前
2秒前
2秒前
在水一方应助老实幻姬采纳,获得10
2秒前
浮游应助AA采纳,获得10
3秒前
制冷剂发布了新的文献求助10
3秒前
3秒前
郭正霄发布了新的文献求助10
3秒前
3秒前
4秒前
椿萱并茂完成签到 ,获得积分10
4秒前
赵苏程发布了新的文献求助10
4秒前
乐乐应助刘六采纳,获得10
5秒前
大个应助YufanZhang采纳,获得10
5秒前
5秒前
活力曼青完成签到,获得积分10
5秒前
6秒前
这瓜不卖发布了新的文献求助10
6秒前
Orange应助帅气蓝采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Akim应助寒冷黎云采纳,获得10
7秒前
8秒前
健忘远山完成签到 ,获得积分10
8秒前
hanleiharry1发布了新的文献求助10
9秒前
Channing_Ho完成签到 ,获得积分10
9秒前
eric888应助辛勤的诗蕊采纳,获得50
10秒前
10秒前
顺利毕业完成签到,获得积分10
10秒前
11秒前
科研小白完成签到,获得积分10
11秒前
Ava应助甜蜜花采纳,获得10
11秒前
上官若男应助Raza采纳,获得10
11秒前
12秒前
Ava应助眼睛大行云采纳,获得10
12秒前
13秒前
xue完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978