Establishment of an immune-related gene prognostic model for head and neck tumors.

列线图 比例危险模型 内科学 医学 预测模型 单变量 多元分析 危险系数 接收机工作特性 生存分析 多元统计 肿瘤科 总体生存率 置信区间 机器学习 计算机科学
作者
Fengchu Zhou,A. Chen,H. Y. Lv,D. Liang,H. W. Yu
出处
期刊:Journal of Biological Regulators and Homeostatic Agents [Biolife Sas]
卷期号:35 (3): 975-986 被引量:1
标识
DOI:10.23812/21-14-a
摘要

This study aimed to screen the key immune-related genes (IRGs) in head and neck squamous cell carcinoma (HNSC) and construct the IRGs-related prognostic model to predict the overall survival (OS) of patients with HNSC. The RNA-seq data and clinical data were downloaded from The Cancer Genome Atlas database, and IRGs were obtained from the Immunology Database and Analysis Portal. Differentially expressed genes (DEGs) between HNSC and normal samples were identified, followed by integration with IRGs to screen differentially expressed IRGs. After univariate and multivariate proportional hazard regression analyses, an IRG-based risk model was constructed. Meanwhile, data chip of GSE65858 as the validation set to assess the predicted performance of established model. Next, univariate and multivariate Cox regression analyses were performed to identify the independent prognostic factor of HNSC, and the Nomogram model was developed to predict patient outcome. Furthermore, the correlation between immune cell infiltration and risk score was analyzed. A total of 65 differently expressed IRGs associated with prognosis of HNSC were screened, and finally a 26-gene IRG signature was identified to construct a prognostic prediction model. The AUC of ROC curve was 0.750. Survival analysis showed that patients in the high-risk group had a worse prognosis. Independent prognostic analysis showed that risk score could be considered as an independent predictor for HNSC prognosis. Nomogram assessment showed that the model had high reliability for predicting the survival of patients with HNSC in 1, 2, 3 years. Ultimately, the abundance of B cells and CD4+ T cell infiltration in HNSC showed negative correlations with risk score. Our IRG-based prognostic risk model may be used to estimate the prognosis of HNSC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌新完成签到 ,获得积分10
1秒前
5秒前
asdf完成签到,获得积分10
6秒前
9秒前
9秒前
资山雁完成签到 ,获得积分10
11秒前
果粒多发布了新的文献求助10
12秒前
为你钟情完成签到 ,获得积分10
14秒前
懒癌晚期完成签到,获得积分10
16秒前
张csc完成签到 ,获得积分10
19秒前
一枝完成签到 ,获得积分10
19秒前
梦XING完成签到 ,获得积分10
20秒前
舒适映寒完成签到,获得积分10
21秒前
幽默梦之完成签到 ,获得积分10
21秒前
欢喜的凡之完成签到 ,获得积分10
25秒前
碎冰蓝完成签到,获得积分10
29秒前
怕孤独的香菇完成签到 ,获得积分10
31秒前
hcdb完成签到,获得积分10
31秒前
yk完成签到 ,获得积分10
32秒前
我爱康康文献完成签到 ,获得积分10
33秒前
33秒前
叶远望完成签到 ,获得积分10
34秒前
Jeffery426完成签到,获得积分10
43秒前
貔貅完成签到,获得积分10
45秒前
48秒前
太叔夜南完成签到,获得积分10
49秒前
小李新人完成签到 ,获得积分10
50秒前
50秒前
啦啦啦完成签到 ,获得积分10
51秒前
tangyangzju发布了新的文献求助10
55秒前
白小橘完成签到 ,获得积分10
1分钟前
tangyangzju完成签到,获得积分10
1分钟前
带志完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
吱吱完成签到 ,获得积分10
1分钟前
1分钟前
呆萌的小海豚完成签到,获得积分10
1分钟前
优雅莞完成签到,获得积分10
1分钟前
Lamis完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167370
捐赠科研通 3248808
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664