Establishment of an immune-related gene prognostic model for head and neck tumors.

列线图 比例危险模型 内科学 医学 预测模型 单变量 多元分析 危险系数 接收机工作特性 生存分析 多元统计 肿瘤科 总体生存率 置信区间 机器学习 计算机科学
作者
Fengchu Zhou,A. Chen,H. Y. Lv,D. Liang,H. W. Yu
出处
期刊:Journal of Biological Regulators and Homeostatic Agents [Biolife Sas]
卷期号:35 (3): 975-986 被引量:1
标识
DOI:10.23812/21-14-a
摘要

This study aimed to screen the key immune-related genes (IRGs) in head and neck squamous cell carcinoma (HNSC) and construct the IRGs-related prognostic model to predict the overall survival (OS) of patients with HNSC. The RNA-seq data and clinical data were downloaded from The Cancer Genome Atlas database, and IRGs were obtained from the Immunology Database and Analysis Portal. Differentially expressed genes (DEGs) between HNSC and normal samples were identified, followed by integration with IRGs to screen differentially expressed IRGs. After univariate and multivariate proportional hazard regression analyses, an IRG-based risk model was constructed. Meanwhile, data chip of GSE65858 as the validation set to assess the predicted performance of established model. Next, univariate and multivariate Cox regression analyses were performed to identify the independent prognostic factor of HNSC, and the Nomogram model was developed to predict patient outcome. Furthermore, the correlation between immune cell infiltration and risk score was analyzed. A total of 65 differently expressed IRGs associated with prognosis of HNSC were screened, and finally a 26-gene IRG signature was identified to construct a prognostic prediction model. The AUC of ROC curve was 0.750. Survival analysis showed that patients in the high-risk group had a worse prognosis. Independent prognostic analysis showed that risk score could be considered as an independent predictor for HNSC prognosis. Nomogram assessment showed that the model had high reliability for predicting the survival of patients with HNSC in 1, 2, 3 years. Ultimately, the abundance of B cells and CD4+ T cell infiltration in HNSC showed negative correlations with risk score. Our IRG-based prognostic risk model may be used to estimate the prognosis of HNSC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宇宙发布了新的文献求助10
1秒前
李秉烛完成签到 ,获得积分10
5秒前
6秒前
四月是你的谎言完成签到 ,获得积分10
7秒前
林大侠完成签到,获得积分10
9秒前
wfw完成签到,获得积分10
10秒前
郑阔完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
14秒前
online1881发布了新的文献求助10
14秒前
15秒前
顺利的雁梅完成签到 ,获得积分10
15秒前
高大的清涟完成签到 ,获得积分10
15秒前
dddddw完成签到,获得积分10
15秒前
赘婿应助霍焱采纳,获得10
15秒前
16秒前
KevinT完成签到,获得积分10
17秒前
泼婆婆完成签到,获得积分10
18秒前
乐乐应助guard采纳,获得10
19秒前
爆米花应助吉涛采纳,获得10
25秒前
shinian完成签到 ,获得积分10
26秒前
疯狂的慕灵完成签到 ,获得积分10
26秒前
笑点低立辉完成签到,获得积分10
27秒前
LL完成签到,获得积分10
28秒前
阔达的琦完成签到 ,获得积分10
29秒前
龙虾发票完成签到,获得积分0
29秒前
小宇等日落完成签到,获得积分10
32秒前
紫菜完成签到,获得积分10
33秒前
专注寻菱完成签到,获得积分10
34秒前
linkin完成签到 ,获得积分10
36秒前
hobowei完成签到 ,获得积分10
36秒前
小太阳完成签到,获得积分10
36秒前
李子谦完成签到 ,获得积分10
36秒前
Spice完成签到 ,获得积分10
36秒前
十年完成签到 ,获得积分10
36秒前
37秒前
大橘完成签到 ,获得积分10
37秒前
陈粒完成签到 ,获得积分10
38秒前
傻傻的飞丹完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助30
40秒前
遮天完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081