材料科学
化学工程
双层
水溶液
三元运算
密度泛函理论
扩散
电化学
纳米片
分析化学(期刊)
离子
纳米技术
电极
膜
物理化学
热力学
计算化学
有机化学
化学
物理
程序设计语言
工程类
生物
遗传学
计算机科学
作者
Zeyi Wu,Chengjie Lu,Fei Ye,Lin Zhang,Le Jiang,Qiang Liu,Hongliang Dong,ZhengMing Sun,Linfeng Hu
标识
DOI:10.1002/adfm.202106816
摘要
Abstract 2D materials with atomically precise thickness and tunable chemical composition hold promise for potential applications in nanoenergy. Herein, a bilayer‐structured VOPO 4 ⋅2H 2 O (bilayer‐VOP) nanosheet is developed with high‐concentration oxygen vacancies ([Vo˙˙]) via a facile liquid‐exfoliation strategy. Galvanostatic intermittent titration technique study indicates a 6 orders of magnitude higher zinc‐ion coefficient in bilayer‐VOP nanosheets (4.6 × 10 −7 cm −2 s −1 ) compared to the bulk counterpart. Assistant density functional theory (DFT) simulation indicates a remarkably enhanced electron conductivity with a reduced bandgap of ≈ 0.2 eV (bulk sample: 1.5 eV) along with an ultralow diffusion barrier of ≈ 0.08 eV (bulk sample: 0.13 eV) in bilayer‐VOP nanosheets, thus leading to superior diffusion kinetics and electrochemical performance. Mott–Schottky (impedance potential) measurement also demonstrates a great increase in electronic conductivity with ≈ 57‐fold increased carrier concentration owing to its high concentration [Vo˙˙]. Benefited by these unique features, the rechargeable zinc‐ion battery composed of bilayer‐VOP nanosheets cathode exhibits a remarkable capacity of 313.6 mAh g −1 (0.1 A g −1 ), an energy density of 301.4 Wh kg −1 , and a prominent rate capability (168.7 mAh g −1 at 10 A g −1 ).
科研通智能强力驱动
Strongly Powered by AbleSci AI