High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

环境科学 表土 荒漠化 植被(病理学) 归一化差异植被指数 土壤有机质 随机森林 增强植被指数 土壤科学 叶面积指数 遥感 土壤水分 计算机科学 地理 农学 生态学 机器学习 医学 植被指数 病理 生物
作者
Yang Junting,Xiaosong Li,Wu Bo,Jian Wu,Bin Sun,Changzhen Yan,Zhihai Gao
出处
期刊:Frontiers in Environmental Science 卷期号:9 被引量:8
标识
DOI:10.3389/fenvs.2021.668912
摘要

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R 2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助zt采纳,获得10
1秒前
1秒前
1秒前
如微发布了新的文献求助10
1秒前
林兰特发布了新的文献求助10
1秒前
1秒前
思源应助windcreator采纳,获得10
1秒前
2秒前
2秒前
277发布了新的文献求助10
2秒前
liuyan完成签到,获得积分10
2秒前
冥土追魂完成签到,获得积分20
2秒前
清秀小蘑菇完成签到,获得积分10
2秒前
阔达的凡发布了新的文献求助10
3秒前
顾己完成签到,获得积分10
3秒前
赋成完成签到 ,获得积分10
3秒前
贵贵完成签到,获得积分10
3秒前
whatever举报求助违规成功
4秒前
罗_举报求助违规成功
4秒前
云瑾举报求助违规成功
4秒前
4秒前
maz123456完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
茉莉是个饱饱完成签到,获得积分10
5秒前
小赵发布了新的文献求助20
6秒前
冥土追魂发布了新的文献求助20
6秒前
赘婿应助孟令涛采纳,获得10
6秒前
Greed完成签到,获得积分10
7秒前
maizhenpeng发布了新的文献求助10
7秒前
有魅力大树完成签到,获得积分10
7秒前
yxy发布了新的文献求助10
7秒前
8秒前
zt完成签到,获得积分10
8秒前
Mengfanrong发布了新的文献求助10
8秒前
阔达的凡完成签到,获得积分10
8秒前
詹上上完成签到,获得积分10
8秒前
高兴的平露完成签到,获得积分10
9秒前
木木完成签到,获得积分10
9秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012