High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

环境科学 表土 荒漠化 植被(病理学) 归一化差异植被指数 土壤有机质 随机森林 增强植被指数 土壤科学 叶面积指数 遥感 土壤水分 计算机科学 地理 农学 生态学 机器学习 病理 生物 医学 植被指数
作者
Yang Junting,Xiaosong Li,Wu Bo,Jian Wu,Bin Sun,Changzhen Yan,Zhihai Gao
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:9 被引量:8
标识
DOI:10.3389/fenvs.2021.668912
摘要

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R 2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
1秒前
betterme发布了新的文献求助10
2秒前
kingwill完成签到,获得积分0
3秒前
3秒前
xxfsx应助杨凤艳采纳,获得10
3秒前
4秒前
精油完成签到,获得积分20
5秒前
6秒前
是盐的学术号吖完成签到 ,获得积分10
7秒前
7秒前
NexusExplorer应助热心的若冰采纳,获得10
8秒前
8秒前
Saisaki完成签到,获得积分10
8秒前
9秒前
精油发布了新的文献求助10
9秒前
浮游应助破风采纳,获得10
10秒前
11秒前
那时花开完成签到,获得积分0
11秒前
Jasmine发布了新的文献求助10
12秒前
崔洪瑞完成签到,获得积分10
12秒前
英俊的铭应助眼睛大夜白采纳,获得10
14秒前
栀一发布了新的文献求助10
15秒前
15秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
安静的小伙完成签到,获得积分10
18秒前
小二郎应助Victor采纳,获得10
20秒前
plaaf发布了新的文献求助10
22秒前
飞云发布了新的文献求助10
22秒前
Van发布了新的文献求助10
23秒前
若雨涵发布了新的文献求助10
24秒前
自信谷冬发布了新的文献求助10
25秒前
和谐的路灯完成签到,获得积分20
26秒前
175发布了新的文献求助10
27秒前
27秒前
27秒前
11完成签到 ,获得积分20
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424261
求助须知:如何正确求助?哪些是违规求助? 4538668
关于积分的说明 14163008
捐赠科研通 4455478
什么是DOI,文献DOI怎么找? 2443778
邀请新用户注册赠送积分活动 1434935
关于科研通互助平台的介绍 1412276