High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

环境科学 表土 荒漠化 植被(病理学) 归一化差异植被指数 土壤有机质 随机森林 增强植被指数 土壤科学 叶面积指数 遥感 土壤水分 计算机科学 地理 农学 生态学 机器学习 病理 生物 医学 植被指数
作者
Yang Junting,Xiaosong Li,Wu Bo,Jian Wu,Bin Sun,Changzhen Yan,Zhihai Gao
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:9 被引量:8
标识
DOI:10.3389/fenvs.2021.668912
摘要

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R 2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyt发布了新的文献求助10
刚刚
小河青青完成签到,获得积分10
1秒前
wen完成签到,获得积分10
1秒前
1秒前
lucky应助科研通管家采纳,获得10
2秒前
材料人发布了新的文献求助10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
英姑应助明理友琴采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得20
2秒前
QianchengZhao应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
倪侃发布了新的文献求助10
3秒前
ding应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
lululu发布了新的文献求助10
4秒前
腾茹煊发布了新的文献求助10
4秒前
刘文辉完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
悄悄完成签到,获得积分10
7秒前
雪白访云完成签到,获得积分10
7秒前
汉堡包应助洪某盆采纳,获得10
8秒前
刘晓云发布了新的文献求助10
8秒前
8秒前
子南完成签到,获得积分10
9秒前
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019