亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

环境科学 表土 荒漠化 植被(病理学) 归一化差异植被指数 土壤有机质 随机森林 增强植被指数 土壤科学 叶面积指数 遥感 土壤水分 计算机科学 地理 农学 生态学 机器学习 病理 生物 医学 植被指数
作者
Yang Junting,Xiaosong Li,Wu Bo,Jian Wu,Bin Sun,Changzhen Yan,Zhihai Gao
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:9 被引量:8
标识
DOI:10.3389/fenvs.2021.668912
摘要

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R 2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哈哈哈哈哈完成签到 ,获得积分10
刚刚
AdrielL发布了新的文献求助10
4秒前
星点完成签到 ,获得积分10
7秒前
桐桐应助momi采纳,获得10
9秒前
11秒前
11秒前
11秒前
16秒前
16秒前
17秒前
19秒前
kei发布了新的文献求助10
20秒前
聪明的如冬完成签到,获得积分10
21秒前
21秒前
1123048683wm发布了新的文献求助10
25秒前
雪白的听寒完成签到 ,获得积分10
26秒前
28秒前
酷波er应助1123048683wm采纳,获得10
32秒前
wy发布了新的文献求助10
32秒前
39秒前
英姑应助牛小牛采纳,获得10
43秒前
47秒前
George完成签到,获得积分10
56秒前
发发完成签到,获得积分20
58秒前
imcwj完成签到 ,获得积分10
59秒前
1分钟前
aaa5a123完成签到 ,获得积分10
1分钟前
1分钟前
清秀小霸王完成签到 ,获得积分10
1分钟前
打败王旭应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
星星发布了新的文献求助10
1分钟前
大模型应助kei采纳,获得10
1分钟前
无风发布了新的文献求助10
1分钟前
Honor完成签到 ,获得积分10
1分钟前
发发发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599