亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

环境科学 表土 荒漠化 植被(病理学) 归一化差异植被指数 土壤有机质 随机森林 增强植被指数 土壤科学 叶面积指数 遥感 土壤水分 计算机科学 地理 农学 生态学 机器学习 医学 植被指数 病理 生物
作者
Yang Junting,Xiaosong Li,Wu Bo,Jian Wu,Bin Sun,Changzhen Yan,Zhihai Gao
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:9 被引量:8
标识
DOI:10.3389/fenvs.2021.668912
摘要

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R 2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
11秒前
猫抓板发布了新的文献求助10
19秒前
英姑应助猫抓板采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
41秒前
猫抓板发布了新的文献求助10
47秒前
年轻的凝云完成签到 ,获得积分10
52秒前
不能在吃了完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安青兰完成签到 ,获得积分10
1分钟前
大大大发布了新的文献求助10
1分钟前
nc完成签到 ,获得积分10
1分钟前
科目三应助洁净以冬采纳,获得10
1分钟前
傲骨完成签到 ,获得积分10
1分钟前
jinsijia发布了新的文献求助30
1分钟前
LM完成签到,获得积分10
1分钟前
1分钟前
洁净以冬发布了新的文献求助10
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
2分钟前
Jerry发布了新的文献求助10
2分钟前
万能图书馆应助Jerry采纳,获得10
2分钟前
3分钟前
Ww完成签到,获得积分20
3分钟前
风中的迎丝完成签到,获得积分10
3分钟前
3分钟前
wmz完成签到 ,获得积分10
3分钟前
qc发布了新的文献求助10
3分钟前
3分钟前
pups发布了新的文献求助30
3分钟前
qc完成签到,获得积分20
3分钟前
李健应助ttt采纳,获得30
3分钟前
4分钟前
ttt发布了新的文献求助30
4分钟前
重庆森林完成签到,获得积分10
4分钟前
七月份的表完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671228
求助须知:如何正确求助?哪些是违规求助? 4912699
关于积分的说明 15134266
捐赠科研通 4830020
什么是DOI,文献DOI怎么找? 2586614
邀请新用户注册赠送积分活动 1540279
关于科研通互助平台的介绍 1498455