High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

环境科学 表土 荒漠化 植被(病理学) 归一化差异植被指数 土壤有机质 随机森林 增强植被指数 土壤科学 叶面积指数 遥感 土壤水分 计算机科学 地理 农学 生态学 机器学习 病理 生物 医学 植被指数
作者
Yang Junting,Xiaosong Li,Wu Bo,Jian Wu,Bin Sun,Changzhen Yan,Zhihai Gao
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:9 被引量:8
标识
DOI:10.3389/fenvs.2021.668912
摘要

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R 2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chentong完成签到 ,获得积分10
刚刚
道以文完成签到,获得积分10
1秒前
爱吃脑袋瓜完成签到,获得积分10
1秒前
忧郁紫翠完成签到,获得积分10
1秒前
Zel博博完成签到,获得积分10
1秒前
雪婆发布了新的文献求助10
1秒前
2秒前
亚琳完成签到,获得积分10
3秒前
旭宝儿发布了新的文献求助10
3秒前
云&fudong完成签到,获得积分10
4秒前
余生发布了新的文献求助10
4秒前
天道酬勤完成签到,获得积分10
4秒前
研友_Y59785应助无限的依波采纳,获得10
4秒前
4秒前
暗能量完成签到,获得积分10
5秒前
Li猪猪完成签到,获得积分10
5秒前
saluo完成签到,获得积分10
5秒前
luiii完成签到,获得积分10
5秒前
wse完成签到,获得积分10
6秒前
如意雅山发布了新的文献求助10
7秒前
7秒前
chenlike完成签到,获得积分10
7秒前
7秒前
Nuyoah完成签到 ,获得积分10
8秒前
panjunlu完成签到,获得积分10
8秒前
8秒前
李小新完成签到 ,获得积分10
8秒前
Ava应助木亢王足各采纳,获得10
9秒前
wushangyu发布了新的文献求助10
9秒前
完美世界应助Gj采纳,获得10
9秒前
10秒前
是真的完成签到 ,获得积分10
10秒前
苏silence发布了新的文献求助10
10秒前
gnr2000发布了新的文献求助10
11秒前
优雅盼海发布了新的文献求助10
11秒前
眯眯眼的海完成签到,获得积分10
12秒前
爆米花应助CQ采纳,获得10
12秒前
斯文败类应助snowdrift采纳,获得10
12秒前
gggja完成签到,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582