Strategies of binder design for high-performance lithium-ion batteries: a mini review

材料科学 锂(药物) 电池(电) 溶解 化学工程 电极 纳米技术 电化学 功率(物理) 化学 量子力学 医学 物理 工程类 内分泌学 物理化学
作者
Yanbo Wang,Qi Yang,Xun Guo,Shuo Yang,Ao Chen,Guojin Liang,Chunyi Zhi
出处
期刊:Rare Metals [Springer Nature]
卷期号:41 (3): 745-761 被引量:39
标识
DOI:10.1007/s12598-021-01816-y
摘要

Developing high-performance lithium-ion batteries (LIBs) with high energy density, rate capability and long cycle life are essential for the ever-growing practical application. Among all battery components, the binder plays a key role in determining the preparation of electrodes and the improvement of battery performance, in spite of a low usage amount. The main function of binder is to bond the active material, conductive additive and current collector together and provide electron and ion channels to improve the kinetics of electrochemical reaction. With the ever-increasing requirement of high energy density by LIBs, technical challenges such as volume expansion and active material dissolution are attracting worldwide attentions, where binder is thought to provide a new solution. There are two main categories (organic solvent soluble binder and water-soluble binder) and abundant polar functional groups providing adhesion ability. It is of great significance to timely summarize the latest progress in battery binders and present the principles for designing novel binders with both robust binding interaction and outstanding electrode stabilization function. This review begins with an introduction of the binding mechanism and the related binding forces, including mechanical interlocking forces and interfacial forces. Then, we discussed four different strategies (the enhancement of binding force, the formation of three-dimensional (3D) network, the enhancement of conductivity and binders with special functions) for constructing ideal binder system in order to satisfy the specific demands of different batteries, such as LIBs and lithium–sulfur (Li–S) batteries. Finally, some prospective and promising directions of binder design are proposed based on the existing and emerging binders and guide the development of the next-generation LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的半仙完成签到 ,获得积分10
刚刚
2秒前
2秒前
heyan完成签到,获得积分10
3秒前
柚子发布了新的文献求助10
3秒前
qq完成签到,获得积分10
3秒前
海带完成签到,获得积分10
5秒前
5秒前
DAN_完成签到,获得积分10
6秒前
7秒前
8秒前
zizi发布了新的文献求助30
9秒前
10秒前
丝丢皮的完成签到 ,获得积分10
10秒前
小王小王发布了新的文献求助10
10秒前
LIN_YX发布了新的文献求助10
11秒前
西里应助可爱的石头采纳,获得30
13秒前
wbgwudi完成签到,获得积分10
13秒前
Yziii应助科研通管家采纳,获得20
13秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
whatever应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
14秒前
在水一方应助科研通管家采纳,获得30
15秒前
华仔应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
顺利萧完成签到,获得积分10
15秒前
义气的幻翠完成签到,获得积分10
15秒前
jrlhappy发布了新的文献求助10
15秒前
嘟嘟请让一让完成签到,获得积分10
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265951
求助须知:如何正确求助?哪些是违规求助? 2905821
关于积分的说明 8335441
捐赠科研通 2576184
什么是DOI,文献DOI怎么找? 1400338
科研通“疑难数据库(出版商)”最低求助积分说明 654746
邀请新用户注册赠送积分活动 633556