Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images

计算机科学 计算机视觉 人工智能 背景(考古学) 模式识别(心理学) 杠杆(统计) 生物 古生物学
作者
Ruining Deng,Haichun Yang,Aadarsh Jha,Yan Lu,Peng Chu,Agnes B. Fogo,Yuankai Huo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (7): 1924-1933 被引量:9
标识
DOI:10.1109/tmi.2021.3069154
摘要

There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from the same tissue can be acquired as a stack of images, similar to frames in a video. In radiology, the stack of images (e.g., computed tomography) are naturally used to provide 3D context for organs, tissues, and tumors. In pathology, it is appealing to do a similar 3D assessment. However, the 3D identification and association of large-scale glomeruli on renal pathology is challenging due to large tissue deformation, missing tissues, and artifacts from WSI. In this paper, we propose a novel Multi-object Association for Pathology in 3D (Map3D) method for automatically identifying and associating large-scale cross-sections of 3D objects from routine serial sectioning and WSI. The innovations of the Multi-Object Association for Pathology in 3D (Map3D) method are three-fold: (1) the large-scale glomerular association is formed as a new multi-object tracking (MOT) perspective; (2) the quality-aware whole series registration is proposed to not only provide affinity estimation but also offer automatic kidney-wise quality assurance (QA) for registration; (3) a dual-path association method is proposed to tackle the large deformation, missing tissues, and artifacts during tracking. To the best of our knowledge, the Map3D method is the first approach that enables automatic and large-scale glomerular association across 3D serial sectioning using WSI. Our proposed method Map3D achieved MOTA = 44.6, which is 12.1% higher than the non-deep learning benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nyfz2002发布了新的文献求助10
1秒前
lin050711完成签到,获得积分10
2秒前
2秒前
QQ发布了新的文献求助10
3秒前
Tina应助ccc采纳,获得10
3秒前
alex完成签到 ,获得积分10
4秒前
有光光光光光光完成签到,获得积分10
4秒前
zlbbb完成签到,获得积分20
6秒前
sandy_bear完成签到,获得积分10
7秒前
太阳的爸爸完成签到,获得积分10
7秒前
遇见完成签到 ,获得积分10
7秒前
Cys完成签到 ,获得积分10
8秒前
何为会完成签到,获得积分10
8秒前
喵叽发布了新的文献求助10
8秒前
爆米花应助wuu采纳,获得10
9秒前
lunar完成签到 ,获得积分10
9秒前
9秒前
CipherSage应助汤圆采纳,获得10
10秒前
AoAoo完成签到,获得积分10
11秒前
123完成签到,获得积分10
12秒前
大方的羊青完成签到,获得积分10
12秒前
ZhaoCun完成签到,获得积分10
12秒前
小马甲应助XieQinxie采纳,获得10
13秒前
学习猴完成签到,获得积分10
13秒前
13秒前
小二郎应助喵叽采纳,获得10
13秒前
汉堡包应助鲁万仇采纳,获得10
14秒前
小平发布了新的文献求助10
14秒前
蜗牛星星发布了新的文献求助10
14秒前
xdy完成签到 ,获得积分10
14秒前
胖丁完成签到,获得积分10
15秒前
16秒前
16秒前
瓦力文发布了新的文献求助10
17秒前
明理的南风完成签到,获得积分10
17秒前
zcs完成签到,获得积分10
18秒前
ou完成签到,获得积分10
20秒前
20秒前
木子完成签到 ,获得积分10
20秒前
廉凌波发布了新的文献求助10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259