Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images

计算机科学 计算机视觉 人工智能 背景(考古学) 模式识别(心理学) 杠杆(统计) 生物 古生物学
作者
Ruining Deng,Haichun Yang,Aadarsh Jha,Yan Lu,Peng Chu,Agnes B. Fogo,Yuankai Huo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (7): 1924-1933 被引量:9
标识
DOI:10.1109/tmi.2021.3069154
摘要

There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from the same tissue can be acquired as a stack of images, similar to frames in a video. In radiology, the stack of images (e.g., computed tomography) are naturally used to provide 3D context for organs, tissues, and tumors. In pathology, it is appealing to do a similar 3D assessment. However, the 3D identification and association of large-scale glomeruli on renal pathology is challenging due to large tissue deformation, missing tissues, and artifacts from WSI. In this paper, we propose a novel Multi-object Association for Pathology in 3D (Map3D) method for automatically identifying and associating large-scale cross-sections of 3D objects from routine serial sectioning and WSI. The innovations of the Multi-Object Association for Pathology in 3D (Map3D) method are three-fold: (1) the large-scale glomerular association is formed as a new multi-object tracking (MOT) perspective; (2) the quality-aware whole series registration is proposed to not only provide affinity estimation but also offer automatic kidney-wise quality assurance (QA) for registration; (3) a dual-path association method is proposed to tackle the large deformation, missing tissues, and artifacts during tracking. To the best of our knowledge, the Map3D method is the first approach that enables automatic and large-scale glomerular association across 3D serial sectioning using WSI. Our proposed method Map3D achieved MOTA = 44.6, which is 12.1% higher than the non-deep learning benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xiaoyao完成签到,获得积分10
2秒前
邹坤发布了新的文献求助10
3秒前
3秒前
CCC完成签到,获得积分10
3秒前
le123zxc完成签到,获得积分10
4秒前
WZY666发布了新的文献求助30
4秒前
4秒前
黄家宝完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
丘比特应助Lurant采纳,获得10
5秒前
大幂幂完成签到,获得积分10
6秒前
无感发布了新的文献求助10
7秒前
xiong完成签到,获得积分10
7秒前
大个应助好名字采纳,获得10
8秒前
8秒前
8秒前
天天快乐应助黄家宝采纳,获得10
9秒前
共享精神应助复杂的无敌采纳,获得10
9秒前
zz完成签到,获得积分10
9秒前
10秒前
格格完成签到,获得积分20
10秒前
华仔应助不吃香菜采纳,获得10
11秒前
Hello应助Linne采纳,获得10
11秒前
xiong发布了新的文献求助10
11秒前
可可布朗尼完成签到,获得积分10
11秒前
qwz发布了新的文献求助10
11秒前
12秒前
12秒前
努力毕业的胖秋完成签到,获得积分10
12秒前
13秒前
小二郎应助wsy采纳,获得10
13秒前
13秒前
13秒前
13秒前
干脆面发布了新的文献求助10
13秒前
小二郎应助lluuoo采纳,获得10
13秒前
姜昕完成签到,获得积分10
14秒前
CipherSage应助包容的凛采纳,获得10
14秒前
pancake完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722