Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images

计算机科学 计算机视觉 人工智能 背景(考古学) 模式识别(心理学) 杠杆(统计) 生物 古生物学
作者
Ruining Deng,Haichun Yang,Aadarsh Jha,Yan Lu,Peng Chu,Agnes B. Fogo,Yuankai Huo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (7): 1924-1933 被引量:9
标识
DOI:10.1109/tmi.2021.3069154
摘要

There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from the same tissue can be acquired as a stack of images, similar to frames in a video. In radiology, the stack of images (e.g., computed tomography) are naturally used to provide 3D context for organs, tissues, and tumors. In pathology, it is appealing to do a similar 3D assessment. However, the 3D identification and association of large-scale glomeruli on renal pathology is challenging due to large tissue deformation, missing tissues, and artifacts from WSI. In this paper, we propose a novel Multi-object Association for Pathology in 3D (Map3D) method for automatically identifying and associating large-scale cross-sections of 3D objects from routine serial sectioning and WSI. The innovations of the Multi-Object Association for Pathology in 3D (Map3D) method are three-fold: (1) the large-scale glomerular association is formed as a new multi-object tracking (MOT) perspective; (2) the quality-aware whole series registration is proposed to not only provide affinity estimation but also offer automatic kidney-wise quality assurance (QA) for registration; (3) a dual-path association method is proposed to tackle the large deformation, missing tissues, and artifacts during tracking. To the best of our knowledge, the Map3D method is the first approach that enables automatic and large-scale glomerular association across 3D serial sectioning using WSI. Our proposed method Map3D achieved MOTA = 44.6, which is 12.1% higher than the non-deep learning benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥游天下完成签到,获得积分10
刚刚
刚刚
椰奶椰奶发布了新的文献求助10
刚刚
丘比特应助t忒对采纳,获得10
1秒前
hanshuo4400发布了新的文献求助10
2秒前
烟花应助湛刘佳采纳,获得10
3秒前
跑快点发布了新的文献求助10
3秒前
Hello应助勤奋的皮卡丘采纳,获得10
4秒前
wqc2060完成签到,获得积分10
4秒前
科研通AI5应助jonathan采纳,获得10
5秒前
秋秋完成签到,获得积分10
8秒前
情怀应助sure采纳,获得10
8秒前
炫潮浪子完成签到,获得积分10
10秒前
10秒前
ZYao65发布了新的文献求助10
11秒前
跑快点完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
14秒前
张凤发布了新的文献求助10
15秒前
qingzx完成签到 ,获得积分10
16秒前
湛刘佳发布了新的文献求助10
17秒前
18秒前
arcremnant完成签到,获得积分10
20秒前
22秒前
Yuanyuan发布了新的文献求助10
23秒前
FIN应助Wu采纳,获得10
24秒前
七七八八完成签到,获得积分10
24秒前
25秒前
sure发布了新的文献求助10
25秒前
26秒前
叁金完成签到,获得积分10
26秒前
李爱国应助向守卫采纳,获得10
27秒前
t忒对发布了新的文献求助10
29秒前
30秒前
英俊的铭应助秀丽笑容采纳,获得10
30秒前
xiepeijuan应助hanshuo4400采纳,获得10
31秒前
朝苍梧完成签到,获得积分10
31秒前
Yuanyuan完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761965
求助须知:如何正确求助?哪些是违规求助? 3305655
关于积分的说明 10135129
捐赠科研通 3019805
什么是DOI,文献DOI怎么找? 1658407
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783