Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images

计算机科学 计算机视觉 人工智能 背景(考古学) 模式识别(心理学) 杠杆(统计) 生物 古生物学
作者
Ruining Deng,Haichun Yang,Aadarsh Jha,Yan Lu,Peng Chu,Agnes B. Fogo,Yuankai Huo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (7): 1924-1933 被引量:9
标识
DOI:10.1109/tmi.2021.3069154
摘要

There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from the same tissue can be acquired as a stack of images, similar to frames in a video. In radiology, the stack of images (e.g., computed tomography) are naturally used to provide 3D context for organs, tissues, and tumors. In pathology, it is appealing to do a similar 3D assessment. However, the 3D identification and association of large-scale glomeruli on renal pathology is challenging due to large tissue deformation, missing tissues, and artifacts from WSI. In this paper, we propose a novel Multi-object Association for Pathology in 3D (Map3D) method for automatically identifying and associating large-scale cross-sections of 3D objects from routine serial sectioning and WSI. The innovations of the Multi-Object Association for Pathology in 3D (Map3D) method are three-fold: (1) the large-scale glomerular association is formed as a new multi-object tracking (MOT) perspective; (2) the quality-aware whole series registration is proposed to not only provide affinity estimation but also offer automatic kidney-wise quality assurance (QA) for registration; (3) a dual-path association method is proposed to tackle the large deformation, missing tissues, and artifacts during tracking. To the best of our knowledge, the Map3D method is the first approach that enables automatic and large-scale glomerular association across 3D serial sectioning using WSI. Our proposed method Map3D achieved MOTA = 44.6, which is 12.1% higher than the non-deep learning benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
充电宝应助xy采纳,获得10
2秒前
3秒前
3秒前
脑洞疼应助坚定的怜菡采纳,获得10
4秒前
张立敏完成签到,获得积分10
5秒前
传奇3应助wg采纳,获得10
6秒前
圆听听完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
lxp发布了新的文献求助10
8秒前
8秒前
9秒前
不倦发布了新的文献求助10
10秒前
GGbound发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
WY发布了新的文献求助10
13秒前
栗昊发布了新的文献求助10
13秒前
pai完成签到,获得积分10
13秒前
天天快乐应助阿季采纳,获得10
13秒前
好运来完成签到,获得积分10
13秒前
qq发布了新的文献求助20
14秒前
15秒前
16秒前
17秒前
slk完成签到,获得积分10
18秒前
CipherSage应助276860采纳,获得10
18秒前
18秒前
科研通AI6应助oneday采纳,获得10
20秒前
微笑无敌瑶完成签到,获得积分10
20秒前
wg发布了新的文献求助10
20秒前
22秒前
科研通AI6应助lxp采纳,获得10
22秒前
香蕉觅云应助小鱼采纳,获得10
22秒前
yaoyao6688发布了新的文献求助10
22秒前
顾矜应助LL采纳,获得10
23秒前
我爱科研完成签到,获得积分10
25秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291