Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images

计算机科学 计算机视觉 人工智能 背景(考古学) 模式识别(心理学) 杠杆(统计) 生物 古生物学
作者
Ruining Deng,Haichun Yang,Aadarsh Jha,Yan Lu,Peng Chu,Agnes B. Fogo,Yuankai Huo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (7): 1924-1933 被引量:9
标识
DOI:10.1109/tmi.2021.3069154
摘要

There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from the same tissue can be acquired as a stack of images, similar to frames in a video. In radiology, the stack of images (e.g., computed tomography) are naturally used to provide 3D context for organs, tissues, and tumors. In pathology, it is appealing to do a similar 3D assessment. However, the 3D identification and association of large-scale glomeruli on renal pathology is challenging due to large tissue deformation, missing tissues, and artifacts from WSI. In this paper, we propose a novel Multi-object Association for Pathology in 3D (Map3D) method for automatically identifying and associating large-scale cross-sections of 3D objects from routine serial sectioning and WSI. The innovations of the Multi-Object Association for Pathology in 3D (Map3D) method are three-fold: (1) the large-scale glomerular association is formed as a new multi-object tracking (MOT) perspective; (2) the quality-aware whole series registration is proposed to not only provide affinity estimation but also offer automatic kidney-wise quality assurance (QA) for registration; (3) a dual-path association method is proposed to tackle the large deformation, missing tissues, and artifacts during tracking. To the best of our knowledge, the Map3D method is the first approach that enables automatic and large-scale glomerular association across 3D serial sectioning using WSI. Our proposed method Map3D achieved MOTA = 44.6, which is 12.1% higher than the non-deep learning benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liubo发布了新的文献求助10
刚刚
刚刚
遇见完成签到 ,获得积分10
1秒前
时567完成签到,获得积分10
1秒前
3秒前
jing完成签到,获得积分10
3秒前
热心的匕应助没有银采纳,获得10
3秒前
ANDRT完成签到,获得积分10
4秒前
Lucas应助wdn0411采纳,获得30
4秒前
12346完成签到,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
朴实薯片完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
压缩应助科研通管家采纳,获得20
5秒前
陈军应助科研通管家采纳,获得20
5秒前
852应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
陈军应助科研通管家采纳,获得20
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
6秒前
怡然雁凡发布了新的文献求助10
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
lalala完成签到,获得积分10
6秒前
彭于晏应助一定可以采纳,获得10
6秒前
jing发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
可靠的南霜完成签到 ,获得积分10
8秒前
健忘荧完成签到 ,获得积分10
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135300
求助须知:如何正确求助?哪些是违规求助? 2786282
关于积分的说明 7776733
捐赠科研通 2442250
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847