亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Map3D: Registration-Based Multi-Object Tracking on 3D Serial Whole Slide Images

计算机科学 计算机视觉 人工智能 背景(考古学) 模式识别(心理学) 杠杆(统计) 生物 古生物学
作者
Ruining Deng,Haichun Yang,Aadarsh Jha,Yan Lu,Peng Chu,Agnes B. Fogo,Yuankai Huo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (7): 1924-1933 被引量:9
标识
DOI:10.1109/tmi.2021.3069154
摘要

There has been a long pursuit for precise and reproducible glomerular quantification on renal pathology to leverage both research and practice. When digitizing the biopsy tissue samples using whole slide imaging (WSI), a set of serial sections from the same tissue can be acquired as a stack of images, similar to frames in a video. In radiology, the stack of images (e.g., computed tomography) are naturally used to provide 3D context for organs, tissues, and tumors. In pathology, it is appealing to do a similar 3D assessment. However, the 3D identification and association of large-scale glomeruli on renal pathology is challenging due to large tissue deformation, missing tissues, and artifacts from WSI. In this paper, we propose a novel Multi-object Association for Pathology in 3D (Map3D) method for automatically identifying and associating large-scale cross-sections of 3D objects from routine serial sectioning and WSI. The innovations of the Multi-Object Association for Pathology in 3D (Map3D) method are three-fold: (1) the large-scale glomerular association is formed as a new multi-object tracking (MOT) perspective; (2) the quality-aware whole series registration is proposed to not only provide affinity estimation but also offer automatic kidney-wise quality assurance (QA) for registration; (3) a dual-path association method is proposed to tackle the large deformation, missing tissues, and artifacts during tracking. To the best of our knowledge, the Map3D method is the first approach that enables automatic and large-scale glomerular association across 3D serial sectioning using WSI. Our proposed method Map3D achieved MOTA = 44.6, which is 12.1% higher than the non-deep learning benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI6应助懦弱的丹秋采纳,获得10
20秒前
量子星尘发布了新的文献求助10
35秒前
49秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
聪明的云完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
朴素易梦完成签到,获得积分10
2分钟前
小马甲应助John采纳,获得10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
John完成签到,获得积分10
3分钟前
John发布了新的文献求助10
3分钟前
Ji完成签到,获得积分10
4分钟前
阔达白凡完成签到,获得积分10
4分钟前
桥西小河完成签到 ,获得积分10
4分钟前
TongKY完成签到 ,获得积分10
4分钟前
4分钟前
美丽的冰枫完成签到,获得积分10
4分钟前
义气的断秋完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助50
4分钟前
4分钟前
shee发布了新的文献求助10
4分钟前
5分钟前
研友_892kOL完成签到 ,获得积分10
5分钟前
shee完成签到,获得积分20
5分钟前
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
003完成签到,获得积分10
6分钟前
科研兵发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
我是老大应助科研兵采纳,获得10
6分钟前
001完成签到,获得积分10
6分钟前
昭荃完成签到 ,获得积分0
8分钟前
馆长完成签到,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827