Towards adaptive and finer rehabilitation assessment: A learning framework for kinematic evaluation of upper limb rehabilitation on an Armeo Spring exoskeleton

运动学 判别式 康复 过程(计算) 计算机科学 概率逻辑 外骨骼 人工智能 物理医学与康复 比例(比率) 机器学习
作者
Yeser Meziani,Yann Morère,Amine Hadj-Abdelkader,Mohammed Benmansour,Guy Bourhis
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:111: 104804- 被引量:2
标识
DOI:10.1016/j.conengprac.2021.104804
摘要

Abstract Providing specialized rehabilitation and tailoring the training process for patient’s needs and according to recovery potentials has gained importance. To satisfy this need, a dynamic assessment of the performance of the recovery process is required. Assessing rehabilitation for the upper limb is often carried out with clinical subjective scales that do not satisfy these requirements. The use of technologies introduced several sensors into the devices used for rehabilitation and permitted the rise of kinematic assessments. Kinematic measures provide an objective scale to follow up recovery during upper limb rehabilitation. The kinematics are still raw evaluations since they present insignificant effects if studied over short periods or on heterogeneous samples. We propose a framework for modeling the trajectories as a means of encoding the specificity of the movement at every stage. The new technique permits detecting significant differences as soon as three training sessions became available. We adopt an expectation–maximization algorithm and an optimization technique to encode the trajectories and the transition model from the acquired data. The framework enables us to encode in a Bayesian sense the observations from the patient and define six metrics to follow up on the progress of the movement quality. Statistical analysis of the results proved that these metrics are effective in tracking the evolution of the recovery. The results also established a strong discriminative property. The proposed framework promises a finer scale of evaluation and extends the knowledge about kinematic assessment. This study’s findings suggest that adopting these new metrics can help achieve more individualized patient care. It additionally promises to limit the amount of data needed to detect a significant change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到 ,获得积分10
刚刚
wujingshuai完成签到,获得积分10
1秒前
ding应助肥小耗采纳,获得10
2秒前
苏我入鹿完成签到,获得积分10
2秒前
李晓玲发布了新的文献求助10
3秒前
XRQ完成签到,获得积分10
3秒前
林kh完成签到 ,获得积分10
3秒前
番茄市长完成签到,获得积分10
4秒前
5秒前
xionggege完成签到,获得积分10
5秒前
5秒前
楼北完成签到,获得积分0
5秒前
研友_ZlqeD8完成签到,获得积分10
5秒前
5秒前
6秒前
xyy完成签到,获得积分10
7秒前
zuozz发布了新的文献求助10
7秒前
积极慕晴完成签到,获得积分10
7秒前
fzh完成签到,获得积分10
8秒前
qwer完成签到,获得积分10
9秒前
10秒前
领导范儿应助缥缈无色采纳,获得10
11秒前
Galato发布了新的文献求助10
11秒前
甜蜜花发布了新的文献求助10
11秒前
Dudidu发布了新的文献求助10
12秒前
852应助别整太拗口的采纳,获得10
12秒前
等待采柳完成签到,获得积分10
13秒前
13秒前
hah完成签到 ,获得积分10
15秒前
MISA完成签到 ,获得积分10
15秒前
李晓玲完成签到,获得积分10
15秒前
王蕊发布了新的文献求助20
16秒前
16秒前
呐呐呐完成签到,获得积分10
16秒前
vv应助等待采柳采纳,获得30
17秒前
HY发布了新的文献求助10
18秒前
帅气的小翟完成签到,获得积分10
20秒前
甜甜醉香发布了新的文献求助10
20秒前
小盆完成签到,获得积分10
21秒前
bhc完成签到,获得积分10
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379616
求助须知:如何正确求助?哪些是违规求助? 4503889
关于积分的说明 14016933
捐赠科研通 4412719
什么是DOI,文献DOI怎么找? 2423913
邀请新用户注册赠送积分活动 1416795
关于科研通互助平台的介绍 1394372