Towards adaptive and finer rehabilitation assessment: A learning framework for kinematic evaluation of upper limb rehabilitation on an Armeo Spring exoskeleton

运动学 判别式 康复 过程(计算) 计算机科学 概率逻辑 外骨骼 人工智能 物理医学与康复 比例(比率) 机器学习
作者
Yeser Meziani,Yann Morère,Amine Hadj-Abdelkader,Mohammed Benmansour,Guy Bourhis
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:111: 104804- 被引量:2
标识
DOI:10.1016/j.conengprac.2021.104804
摘要

Abstract Providing specialized rehabilitation and tailoring the training process for patient’s needs and according to recovery potentials has gained importance. To satisfy this need, a dynamic assessment of the performance of the recovery process is required. Assessing rehabilitation for the upper limb is often carried out with clinical subjective scales that do not satisfy these requirements. The use of technologies introduced several sensors into the devices used for rehabilitation and permitted the rise of kinematic assessments. Kinematic measures provide an objective scale to follow up recovery during upper limb rehabilitation. The kinematics are still raw evaluations since they present insignificant effects if studied over short periods or on heterogeneous samples. We propose a framework for modeling the trajectories as a means of encoding the specificity of the movement at every stage. The new technique permits detecting significant differences as soon as three training sessions became available. We adopt an expectation–maximization algorithm and an optimization technique to encode the trajectories and the transition model from the acquired data. The framework enables us to encode in a Bayesian sense the observations from the patient and define six metrics to follow up on the progress of the movement quality. Statistical analysis of the results proved that these metrics are effective in tracking the evolution of the recovery. The results also established a strong discriminative property. The proposed framework promises a finer scale of evaluation and extends the knowledge about kinematic assessment. This study’s findings suggest that adopting these new metrics can help achieve more individualized patient care. It additionally promises to limit the amount of data needed to detect a significant change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊蔓蔓完成签到,获得积分10
1秒前
dingyi601完成签到,获得积分10
1秒前
tt123完成签到,获得积分10
1秒前
2秒前
糟糕的学姐完成签到,获得积分10
3秒前
yookia应助vbbbj采纳,获得10
3秒前
今后应助124cndhaP采纳,获得30
4秒前
meng完成签到 ,获得积分10
5秒前
HHHZZZ完成签到,获得积分10
5秒前
香蕉沧海发布了新的文献求助10
6秒前
高挑的梦芝完成签到,获得积分10
7秒前
婷123发布了新的文献求助20
7秒前
8秒前
我不爱池鱼应助Torment采纳,获得10
8秒前
小阮完成签到,获得积分10
8秒前
8秒前
迷人问兰发布了新的文献求助30
9秒前
vovoking完成签到 ,获得积分10
9秒前
10秒前
Jasper应助nuannuan采纳,获得10
10秒前
hzwyyds应助栗子采纳,获得10
12秒前
李希发布了新的文献求助50
12秒前
英俊的铭应助元宝采纳,获得10
13秒前
ZJHYNL应助111采纳,获得20
13秒前
早睡早起发布了新的文献求助10
14秒前
鳗鱼焦完成签到 ,获得积分10
14秒前
新威宝贝发布了新的文献求助10
15秒前
Jocd完成签到,获得积分10
20秒前
小二郎应助SAOKA采纳,获得10
22秒前
农夫果园完成签到,获得积分10
24秒前
26秒前
加二完成签到,获得积分10
27秒前
28秒前
辞忧完成签到,获得积分10
28秒前
无情的豆芽完成签到 ,获得积分10
31秒前
ASDS发布了新的文献求助10
31秒前
SAOKA发布了新的文献求助10
33秒前
33秒前
上官若男应助航仔采纳,获得10
33秒前
燕子完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713