Towards adaptive and finer rehabilitation assessment: A learning framework for kinematic evaluation of upper limb rehabilitation on an Armeo Spring exoskeleton

运动学 判别式 康复 过程(计算) 计算机科学 概率逻辑 外骨骼 人工智能 物理医学与康复 比例(比率) 机器学习
作者
Yeser Meziani,Yann Morère,Amine Hadj-Abdelkader,Mohammed Benmansour,Guy Bourhis
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:111: 104804- 被引量:2
标识
DOI:10.1016/j.conengprac.2021.104804
摘要

Abstract Providing specialized rehabilitation and tailoring the training process for patient’s needs and according to recovery potentials has gained importance. To satisfy this need, a dynamic assessment of the performance of the recovery process is required. Assessing rehabilitation for the upper limb is often carried out with clinical subjective scales that do not satisfy these requirements. The use of technologies introduced several sensors into the devices used for rehabilitation and permitted the rise of kinematic assessments. Kinematic measures provide an objective scale to follow up recovery during upper limb rehabilitation. The kinematics are still raw evaluations since they present insignificant effects if studied over short periods or on heterogeneous samples. We propose a framework for modeling the trajectories as a means of encoding the specificity of the movement at every stage. The new technique permits detecting significant differences as soon as three training sessions became available. We adopt an expectation–maximization algorithm and an optimization technique to encode the trajectories and the transition model from the acquired data. The framework enables us to encode in a Bayesian sense the observations from the patient and define six metrics to follow up on the progress of the movement quality. Statistical analysis of the results proved that these metrics are effective in tracking the evolution of the recovery. The results also established a strong discriminative property. The proposed framework promises a finer scale of evaluation and extends the knowledge about kinematic assessment. This study’s findings suggest that adopting these new metrics can help achieve more individualized patient care. It additionally promises to limit the amount of data needed to detect a significant change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助暖吱采纳,获得20
4秒前
受伤的平安完成签到,获得积分10
5秒前
ZeKaWa应助linlin采纳,获得10
7秒前
15秒前
19秒前
tianya完成签到,获得积分10
20秒前
21秒前
烟花应助标致的妙晴采纳,获得10
22秒前
浮游应助朴素的松采纳,获得10
24秒前
24秒前
25秒前
加百莉发布了新的文献求助10
26秒前
cancan发布了新的文献求助10
27秒前
伯言发布了新的文献求助10
32秒前
元谷雪应助陈帅采纳,获得10
33秒前
初雪完成签到,获得积分10
34秒前
花花花花完成签到 ,获得积分10
39秒前
41秒前
42秒前
肉肉完成签到 ,获得积分10
42秒前
cancan完成签到,获得积分10
43秒前
zhuangbaobao发布了新的文献求助10
46秒前
郭6666发布了新的文献求助10
47秒前
完美世界应助留胡子的火采纳,获得10
52秒前
脑洞疼应助郭6666采纳,获得10
52秒前
公冶愚志完成签到,获得积分10
55秒前
威武的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大龙哥886应助ri_290采纳,获得10
1分钟前
sevenhill应助Devastating采纳,获得10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得30
1分钟前
拼搏应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555