Abstract Cassiicolin (Cas), a toxin produced by Corynespora cassiicola , is responsible for corynespora leaf fall disease in rubber trees. Currently, the molecular mechanism of the cytotoxicity of Cas and its host selectivity have not been fully elucidated. Here, we analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane-disruption activities. Using high-speed atomic force microscopy and confocal microscopy, we reveal that the binding and disruption activities of Cas1 and Cas2 on lipid membranes are strongly dependent on the specific plant lipids. The negative phospholipids, glycerolipids, and sterols are more susceptible to membrane damage caused by Cas1 and Cas2 than neutral phospholipids and betaine lipids. Cytotoxicity tests on rubber leaves of RRIV 1, RRIV 4, and PB 255 clones suggest that the toxins cause necrosis of rubber leaves, except for the strong resistance of PB 255 against Cas2. Cryo- SEM analyses of necrotic leaf tissues exposed to Cas1 confirm that cytoplasmic membranes are vulnerable to the toxin. Thus, the host selectivity of Cas toxin is attained by the lipid-dependent binding activity of Cas to the membrane, and the cytotoxicity of Cas arises from its ability to form biofilm-like structures and disrupt specific membranes. Graphic Abstract Highlights Cas1 and Cas2 directly damage and cause necrosis in the leaves of specific rubber clones. Cas1 and Cas2 can form biofilm-like structures on specific lipid membranes (negative phospholipids, glycerolipids, and sterols). The biofilm-like formation of Cas toxin plays an important role in selective disruption on lipid membranes. Vulnerability of the specific cytoplasmic membranes to the selective Cas toxin that is the most remarkable feature of cytotoxicity of Cas toxin on plant cells.