血管生成
医学
活性氧
化学
内质网
药理学
氧化应激
内分泌学
癌症研究
生物化学
作者
Hui Zhen,Sulei Wang,Jianxiang Li,Jingqing Wang,Zhennian Zhang
标识
DOI:10.1016/j.jep.2021.114634
摘要
Cerebral infarction is one of the most common types of cerebrovascular diseases that threaten people's health. Compound Tongluo Decoction (CTLD), a traditional Chinese medicine formula, has various pharmacological activities, including the alleviation of cerebral infarction symptoms.This study aims to explore the potential mechanism by which CTLD alleviates cerebral infarction.Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reperfusion (OGD/R) cell model were established for research. The expression of proteins related to endoplasmic reticulum (ER) stress, ferroptosis, Sonic Hedgehog (SHH) pathway and angiogenesis was analyzed by Western blot analysis. The expression of CD31 was detected by immunofluorescence to investigate angiogenesis. In addition, the expression of GRP78 and XBP-1 in brain tissues was investigated by immunohistochemistry. With the application of Prussian blue staining, iron deposition in brain tissue was detected. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) were detected using ELISA kits. The angiogenesis was analyzed by tube formation assay.The results presented in this research showed that CTLD and 4-phenyl butyric acid (4-PBA; the inhibitor of ER stress) could alleviate cerebral infarction. Mechanistically, CTLD and 4-PBA rescued ER stress and ferroptosis, but promoted SHH signaling in rats with cerebral infarction. In addition, cerebral infarction exhibited a high level of angiogenesis, which was aggravated by CTLD but suppressed by 4-PBA. Furthermore, CTLD inhibited ER stress and ferroptosis, but promoted SHH signaling and angiogenesis in OGD/R-induced PC12 cells, which was partly abolished by SANT-1, an antagonist of SHH signaling.In conclusion, this study revealed that CTLD might inhibit ferroptosis induced by endoplasmic reticulum stress and promote angiogenesis by activating the Sonic Hedgehog pathway in rats with cerebral infarction.
科研通智能强力驱动
Strongly Powered by AbleSci AI