SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image

计算机科学 人工智能 分割 突出 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 深度学习 卷积神经网络 生物化学 基因 化学
作者
Zhenyuan Ning,Shengzhou Zhong,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 476-490 被引量:98
标识
DOI:10.1109/tmi.2021.3116087
摘要

Deep learning methods, especially convolutional neural networks, have been successfully applied to lesion segmentation in breast ultrasound (BUS) images. However, pattern complexity and intensity similarity between the surrounding tissues (i.e., background) and lesion regions (i.e., foreground) bring challenges for lesion segmentation. Considering that such rich texture information is contained in background, very few methods have tried to explore and exploit background-salient representations for assisting foreground segmentation. Additionally, other characteristics of BUS images, i.e., 1) low-contrast appearance and blurry boundary, and 2) significant shape and position variation of lesions, also increase the difficulty in accurate lesion segmentation. In this paper, we present a saliency-guided morphology-aware U-Net (SMU-Net) for lesion segmentation in BUS images. The SMU-Net is composed of a main network with an additional middle stream and an auxiliary network. Specifically, we first propose generation of saliency maps which incorporate both low-level and high-level image structures, for foreground and background. These saliency maps are then employed to guide the main network and auxiliary network for respectively learning foreground-salient and background-salient representations. Furthermore, we devise an additional middle stream which basically consists of background-assisted fusion, shape-aware, edge-aware and position-aware units. This stream receives the coarse-to-fine representations from the main network and auxiliary network for efficiently fusing the foreground-salient and background-salient features and enhancing the ability of learning morphological information for network. Extensive experiments on five datasets demonstrate higher performance and superior robustness to the scale of dataset than several state-of-the-art deep learning approaches in breast lesion segmentation in ultrasound image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
耍酷弱完成签到,获得积分20
刚刚
3秒前
花卷发布了新的文献求助10
4秒前
4秒前
omennnm发布了新的文献求助30
4秒前
瑾瑜发布了新的文献求助10
4秒前
6秒前
怀石逾沙完成签到,获得积分10
7秒前
科研通AI5应助耍酷弱采纳,获得10
7秒前
loko发布了新的文献求助10
7秒前
5433发布了新的文献求助10
7秒前
里予完成签到,获得积分10
8秒前
花生糕发布了新的文献求助10
8秒前
10秒前
科研通AI5应助run采纳,获得30
11秒前
Sylvia完成签到,获得积分10
11秒前
上官若男应助与光采纳,获得10
12秒前
超级比熊发布了新的文献求助10
12秒前
缓慢怜翠发布了新的文献求助10
13秒前
Cyd发布了新的文献求助10
13秒前
14秒前
小井盖完成签到 ,获得积分10
14秒前
carl完成签到,获得积分10
15秒前
Potato完成签到,获得积分10
15秒前
思源应助静迹采纳,获得10
16秒前
17秒前
无花果应助哈哈采纳,获得10
17秒前
18秒前
上官若男应助杰杰大叔采纳,获得10
18秒前
耍酷翠安发布了新的文献求助10
20秒前
侯zijun完成签到,获得积分10
20秒前
大模型应助瑾瑜采纳,获得10
20秒前
21秒前
瓜尔佳发布了新的文献求助10
22秒前
121311发布了新的文献求助10
22秒前
23秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
24秒前
Owen应助烤麸采纳,获得10
24秒前
慕青应助缓慢怜翠采纳,获得10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228