已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image

计算机科学 人工智能 分割 突出 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 深度学习 卷积神经网络 生物化学 基因 化学
作者
Zhenyuan Ning,Shengzhou Zhong,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 476-490 被引量:90
标识
DOI:10.1109/tmi.2021.3116087
摘要

Deep learning methods, especially convolutional neural networks, have been successfully applied to lesion segmentation in breast ultrasound (BUS) images. However, pattern complexity and intensity similarity between the surrounding tissues (i.e., background) and lesion regions (i.e., foreground) bring challenges for lesion segmentation. Considering that such rich texture information is contained in background, very few methods have tried to explore and exploit background-salient representations for assisting foreground segmentation. Additionally, other characteristics of BUS images, i.e., 1) low-contrast appearance and blurry boundary, and 2) significant shape and position variation of lesions, also increase the difficulty in accurate lesion segmentation. In this paper, we present a saliency-guided morphology-aware U-Net (SMU-Net) for lesion segmentation in BUS images. The SMU-Net is composed of a main network with an additional middle stream and an auxiliary network. Specifically, we first propose generation of saliency maps which incorporate both low-level and high-level image structures, for foreground and background. These saliency maps are then employed to guide the main network and auxiliary network for respectively learning foreground-salient and background-salient representations. Furthermore, we devise an additional middle stream which basically consists of background-assisted fusion, shape-aware, edge-aware and position-aware units. This stream receives the coarse-to-fine representations from the main network and auxiliary network for efficiently fusing the foreground-salient and background-salient features and enhancing the ability of learning morphological information for network. Extensive experiments on five datasets demonstrate higher performance and superior robustness to the scale of dataset than several state-of-the-art deep learning approaches in breast lesion segmentation in ultrasound image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvsehx发布了新的文献求助10
3秒前
4秒前
4秒前
刘隶发布了新的文献求助10
8秒前
14秒前
17秒前
org发布了新的文献求助10
18秒前
21秒前
冯依梦完成签到 ,获得积分10
22秒前
22秒前
sunshine完成签到 ,获得积分10
24秒前
刘隶完成签到,获得积分10
26秒前
qingyue发布了新的文献求助10
27秒前
田様应助qingyue采纳,获得10
37秒前
张子捷完成签到,获得积分10
38秒前
39秒前
汉堡包应助炙热的白风采纳,获得10
43秒前
44秒前
堂堂完成签到 ,获得积分10
46秒前
一个可爱的人完成签到 ,获得积分10
47秒前
研友_ndDGVn完成签到 ,获得积分10
48秒前
QIZH发布了新的文献求助10
48秒前
50秒前
51秒前
Flipped发布了新的文献求助100
51秒前
共享精神应助lvsehx采纳,获得10
52秒前
qingyue完成签到,获得积分10
53秒前
YUAN121完成签到,获得积分10
53秒前
54秒前
lingshan完成签到 ,获得积分10
56秒前
木子李发布了新的文献求助10
56秒前
上官若男应助科研通管家采纳,获得10
57秒前
穆紫应助科研通管家采纳,获得10
58秒前
orixero应助科研通管家采纳,获得10
58秒前
58秒前
田様应助科研通管家采纳,获得10
58秒前
未夕晴完成签到,获得积分10
58秒前
momo发布了新的文献求助10
1分钟前
QIZH完成签到,获得积分10
1分钟前
妩媚的夜柳完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171412
求助须知:如何正确求助?哪些是违规求助? 2822368
关于积分的说明 7938871
捐赠科研通 2482850
什么是DOI,文献DOI怎么找? 1322830
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627