SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image

计算机科学 人工智能 分割 突出 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 深度学习 卷积神经网络 生物化学 基因 化学
作者
Zhenyuan Ning,Shengzhou Zhong,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 476-490 被引量:98
标识
DOI:10.1109/tmi.2021.3116087
摘要

Deep learning methods, especially convolutional neural networks, have been successfully applied to lesion segmentation in breast ultrasound (BUS) images. However, pattern complexity and intensity similarity between the surrounding tissues (i.e., background) and lesion regions (i.e., foreground) bring challenges for lesion segmentation. Considering that such rich texture information is contained in background, very few methods have tried to explore and exploit background-salient representations for assisting foreground segmentation. Additionally, other characteristics of BUS images, i.e., 1) low-contrast appearance and blurry boundary, and 2) significant shape and position variation of lesions, also increase the difficulty in accurate lesion segmentation. In this paper, we present a saliency-guided morphology-aware U-Net (SMU-Net) for lesion segmentation in BUS images. The SMU-Net is composed of a main network with an additional middle stream and an auxiliary network. Specifically, we first propose generation of saliency maps which incorporate both low-level and high-level image structures, for foreground and background. These saliency maps are then employed to guide the main network and auxiliary network for respectively learning foreground-salient and background-salient representations. Furthermore, we devise an additional middle stream which basically consists of background-assisted fusion, shape-aware, edge-aware and position-aware units. This stream receives the coarse-to-fine representations from the main network and auxiliary network for efficiently fusing the foreground-salient and background-salient features and enhancing the ability of learning morphological information for network. Extensive experiments on five datasets demonstrate higher performance and superior robustness to the scale of dataset than several state-of-the-art deep learning approaches in breast lesion segmentation in ultrasound image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8uttonwood发布了新的文献求助10
2秒前
JamesPei应助丁牛青采纳,获得10
4秒前
科研通AI2S应助xueshu小裁缝采纳,获得10
4秒前
4秒前
5秒前
6秒前
6秒前
英姑应助Yumeng采纳,获得10
8秒前
10秒前
10秒前
安安完成签到,获得积分10
11秒前
茉莉发布了新的文献求助10
11秒前
脑洞疼应助h丶小虫采纳,获得10
12秒前
张西西完成签到 ,获得积分10
12秒前
yyh完成签到,获得积分10
12秒前
FloppyWow发布了新的文献求助10
12秒前
13秒前
如意寒烟发布了新的文献求助10
14秒前
15秒前
15秒前
蛋卷完成签到 ,获得积分10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
omo应助科研通管家采纳,获得30
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
superxiao应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
tuanheqi应助科研通管家采纳,获得50
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
18秒前
zhangyidian应助科研通管家采纳,获得10
18秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
QOP应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174