Unlocking the potential of boronsilicate glass passivation for industrial tunnel oxide passivated contact solar cells

钝化 共发射极 材料科学 太阳能电池 饱和电流 氧化物 开路电压 分析化学(期刊) 光电子学 冶金 电压 化学 纳米技术 电气工程 图层(电子) 有机化学 工程类 色谱法
作者
Baochen Liao,Jia Ge,Xinyuan Wu,Qiang Wang,Reuben J. Yeo,Zheren Du
出处
期刊:Progress in Photovoltaics [Wiley]
卷期号:30 (3): 310-317 被引量:10
标识
DOI:10.1002/pip.3519
摘要

Abstract In this work, we present a breakthrough in boronsilicate glass (BSG) passivated industrial tunnel oxide passivated contact (i‐TOPCon) solar cells. We find that a high‐temperature firing process significantly improves the front side BSG passivation quality; however, the use of such high‐temperatures is undesirable for metallization as it could lead to more junction damage by the metal paste spikes. In this study, we present a simple and industrially viable method to resolve this dilemma. With a high‐temperature industrial firing activation step to maximize the potential of BSG passivation, a low emitter saturation current ( J 0e ) of 34 fA/cm 2 has been achieved, demonstrating excellent boron emitter passivation that is comparable to state‐of‐the‐art SiO 2 and Al 2 O 3 ‐based passivation methods on similar structures and boron emitters. Applying this solution to cell device, the open‐circuit voltage ( V oc ) is improved by about 6 mV, corresponding to an absolute cell efficiency improvement of about 0.2%. Furthermore, after activating the BSG passivation, a lower temperature paste could be used at the rear side which further improves the V oc by around 3 mV. Combined together, an overall improvement of V oc close to 10 mV is achieved, propelling the cell V oc into the 690‐mV era. The effectiveness of this solution was also verified in a mass production line, with average cell efficiencies of around 23.2% (0.5% more than the baseline) and a maximum cell efficiency and V oc of 23.4% and 693 mV, respectively. This work opens new routes for further improving conventional solar cell efficiencies, in particular for BSG‐passivated TOPCon solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
守护发布了新的文献求助10
刚刚
lsw发布了新的文献求助10
1秒前
1秒前
bkagyin应助ann采纳,获得10
2秒前
2秒前
晨晨发布了新的文献求助10
3秒前
飞飞飞发布了新的文献求助50
3秒前
3秒前
Lxxx发布了新的文献求助10
3秒前
11发布了新的文献求助10
4秒前
4秒前
嘎嘎发布了新的文献求助10
4秒前
Young完成签到,获得积分10
5秒前
5秒前
5秒前
赘婿应助霹雳采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
lwr1234发布了新的文献求助10
6秒前
爆米花应助carly采纳,获得30
6秒前
可爱的函函应助青檬采纳,获得10
7秒前
7秒前
小二郎应助嘎嘎顺利采纳,获得10
7秒前
郭紫薇发布了新的文献求助10
7秒前
7秒前
朴实的青雪完成签到,获得积分10
8秒前
脑洞疼应助孤独音响采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
xiejinhui发布了新的文献求助10
10秒前
冰点完成签到,获得积分10
10秒前
11秒前
在水一方应助晨晨采纳,获得10
12秒前
12秒前
Unknown发布了新的文献求助10
12秒前
老艺人发布了新的文献求助10
12秒前
莫晓岚发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003