Weak fault detection of rolling element bearing combining robust EMD with adaptive maximum second-order cyclostationarity blind deconvolution

循环平稳过程 滚动轴承 反褶积 希尔伯特-黄变换 盲反褶积 算法 信号(编程语言) 振动 计算机科学 模式识别(心理学) 控制理论(社会学) 人工智能 声学 白噪声 物理 频道(广播) 程序设计语言 控制(管理) 电信 计算机网络
作者
Lianhui Jia,Hongchao Wang,Lijie Jiang,WenLiao Du
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:29 (9-10): 2374-2391 被引量:7
标识
DOI:10.1177/10775463221080229
摘要

To solve the difficulty in weak fault detection of rolling element bearing (REB), a fusion method by combining robust empirical mode decomposition (REMD) with adaptive maximum second-order cyclostationarity blind deconvolution (AMCBD) is proposed in the paper. The advantage of REMD in determining the optimal iteration number of a sifting process and the advantage of AMCBD in setting the key parameter (targeted cyclic frequency or fault period) appropriately are utilized comprehensively by the proposed method. Firstly, in view of the multi-component and modulation characteristic of the vibration signal of REB, REMD is used to extract the useful component from the multi-component and modulated signal. Then, AMCBD is used to process the selected useful component to further highlight the cyclostationary and impulse characteristics of the vibration signal of faulty REB. Compared with traditional maximum second-order cyclostationarity blind deconvolution (MCBD) method, AMCBD has the advantage of no needing prior knowledge of the faulty REB such as the targeted cyclic frequency or fault period. At last, envelope spectral (ES) is applied on the signal handled by AMCBD and satisfactory fault extraction feature result is obtained. Effectiveness of the proposed method is verified through simulated, experimental, and engineering signals, and its superiority is also presented through comparison study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
dreamode应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
萌dreaming应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
孙子钊发布了新的文献求助10
2秒前
含蓄的书双完成签到,获得积分10
3秒前
4秒前
慕容雨文发布了新的文献求助30
4秒前
一只不大可爱的蛋完成签到,获得积分10
4秒前
4秒前
小洛发布了新的文献求助10
5秒前
5秒前
caidun完成签到,获得积分10
6秒前
端庄怜容发布了新的文献求助30
7秒前
科研通AI5应助小齐爱科研采纳,获得10
7秒前
8秒前
8秒前
8秒前
小超哥爱学习完成签到 ,获得积分10
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849