Integration of machine learning and first principles models

计算机科学 人工智能 机器学习 领域(数学) 过程(计算) 黑匣子 领域(数学分析) 外推法 数学 操作系统 数学分析 纯数学
作者
Lokesh K. Rajulapati,Sivadurgaprasad Chinta,Bala Shyamala,Raghunathan Rengaswamy
出处
期刊:Aiche Journal [Wiley]
卷期号:68 (6) 被引量:26
标识
DOI:10.1002/aic.17715
摘要

Abstract Model building and parameter estimation are traditional concepts widely used in chemical, biological, metallurgical, and manufacturing industries. Early modeling methodologies focused on mathematically capturing the process knowledge and domain expertise of the modeler. The models thus developed are termed first principles models (or white‐box models). Over time, computational power became cheaper, and massive amounts of data became available for modeling. This led to the development of cutting edge machine learning models (black‐box models) and artificial intelligence (AI) techniques. Hybrid models (gray‐box models) are a combination of first principles and machine learning models. The development of hybrid models has captured the attention of researchers as this combines the best of both modeling paradigms. Recent attention to this field stems from the interest in explainable AI (XAI), a critical requirement as AI systems become more pervasive. This work aims at identifying and categorizing various hybrid models available in the literature that integrate machine‐learning models with different forms of domain knowledge. Benefits such as enhanced predictive power, extrapolation capabilities, and other advantages of combining the two approaches are summarized. The goal of this article is to consolidate the published corpus in the area of hybrid modeling and develop a comprehensive framework to understand the various techniques presented. This framework can further be used as the foundation to explore rational associations between several models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dw5601发布了新的文献求助10
1秒前
NexusExplorer应助有人采纳,获得10
2秒前
孙某人完成签到 ,获得积分0
3秒前
Rjj发布了新的文献求助10
3秒前
4秒前
毕个业完成签到 ,获得积分10
4秒前
zzzzz完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
9527完成签到,获得积分10
5秒前
reset完成签到 ,获得积分10
5秒前
6秒前
华仔应助tonya采纳,获得10
6秒前
小张就瞅瞅完成签到 ,获得积分10
7秒前
8秒前
kushdw发布了新的文献求助10
8秒前
xiaoou完成签到 ,获得积分10
8秒前
长安遗梦完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
里昂发布了新的文献求助10
10秒前
VICKY完成签到,获得积分20
12秒前
Rjj完成签到,获得积分10
13秒前
14秒前
wuchun应助isabellae采纳,获得100
14秒前
Owen应助无情的之槐采纳,获得30
16秒前
刘兰玲发布了新的文献求助20
17秒前
单纯寒荷完成签到 ,获得积分10
17秒前
18秒前
YA应助freshman3005采纳,获得30
18秒前
yaa完成签到 ,获得积分10
19秒前
kushdw完成签到,获得积分10
20秒前
sunsun10086发布了新的文献求助10
21秒前
22秒前
所所应助里昂采纳,获得10
22秒前
SimpleKwee发布了新的文献求助10
24秒前
25秒前
tonya发布了新的文献求助10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268989
求助须知:如何正确求助?哪些是违规求助? 2908595
关于积分的说明 8345992
捐赠科研通 2578746
什么是DOI,文献DOI怎么找? 1402393
科研通“疑难数据库(出版商)”最低求助积分说明 655431
邀请新用户注册赠送积分活动 634581