A CNN-Attention Network for Continuous Estimation of Finger Kinematics from Surface Electromyography

运动学 均方误差 计算机科学 人工智能 卷积神经网络 抓住 相关系数 卷积(计算机科学) 模式识别(心理学) 均方根 语音识别 机器学习 数学 人工神经网络 统计 工程类 物理 经典力学 电气工程 程序设计语言
作者
Yanjuan Geng,Zhebin Yu,Yucheng Long,Liuni Qin,Ziyin Chen,Yongcheng Li,Xin Guo,Guanglin Li
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 6297-6304 被引量:26
标识
DOI:10.1109/lra.2022.3169448
摘要

Dexterous control of robotic hand driven by human motor intent has drawn a lot of attention in both industrial and rehabilitation scenarios. Providing simultaneous and proportional control has become a prevailing solution recently. Towards improving the finger kinematics estimation precision and reducing its computational cost, a convolution model with attention mechanism (CNN-Attention) was proposed in this study. For comparison purpose, two previously used deep learning models, the long short-term memory (LSTM) and the Sparse Pseudo-input Gaussian processes (SPGP) were also included. By using surface electromyography (sEMG) and kinematic signals corresponding to six hand grasp movements, the estimation performance of each of the three models was evaluated with three measures, Pearson Correlation Coefficient (CC), Root Mean Square Error (RMSE), and coefficient of determination (R2) between real and estimated joint angles. The results demonstrated that the proposed CNN-Attention model outperformed LSTM and SPGP significantly ( p -value<0.05), with an average value of CC, RMSE, and R2, 0.87, 9.65 degrees, and 0.73, respectively. Also, the CNN-Attention model is more stable and versatile over various subjects and joint angles in comparison to other models. Additionally, the computational time to build a CNN-Attention was obviously shorter than that to train a LSTM model (43.00 ± 4.25 min vs. 73.40 ± 5.81 min). These findings suggest that the CNN-Attention would be a promising model for continuous estimation of hand movements in the human-machine interaction and cooperation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hulahula完成签到,获得积分10
1秒前
1秒前
dawei发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
无花果应助kepwake采纳,获得10
2秒前
2秒前
EvaHo完成签到,获得积分10
2秒前
3秒前
LEI发布了新的文献求助10
3秒前
汉堡包应助Yashyi采纳,获得10
4秒前
hohokuz发布了新的文献求助10
4秒前
子车茗应助PhDL1采纳,获得20
5秒前
顾矜应助橘涂采纳,获得10
5秒前
易安发布了新的文献求助10
5秒前
最落幕完成签到 ,获得积分10
5秒前
映城发布了新的文献求助50
6秒前
Daisy完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
xsh完成签到,获得积分10
8秒前
xixi关注了科研通微信公众号
9秒前
洁白的故人完成签到 ,获得积分10
10秒前
10秒前
研友_VZG7GZ应助zhengyalan采纳,获得30
10秒前
难过的尔丝完成签到,获得积分10
10秒前
xsh发布了新的文献求助10
12秒前
李爱国应助名侦探柯楠采纳,获得10
13秒前
13秒前
高大一一完成签到 ,获得积分10
13秒前
阿怪完成签到,获得积分10
13秒前
盒子完成签到 ,获得积分10
13秒前
13秒前
小早关注了科研通微信公众号
14秒前
BJYX完成签到,获得积分10
14秒前
洛可可完成签到 ,获得积分10
15秒前
科研通AI6应助阳光易真采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521