亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A CNN-Attention Network for Continuous Estimation of Finger Kinematics from Surface Electromyography

运动学 均方误差 计算机科学 人工智能 卷积神经网络 抓住 相关系数 卷积(计算机科学) 模式识别(心理学) 均方根 语音识别 机器学习 数学 人工神经网络 统计 工程类 物理 经典力学 电气工程 程序设计语言
作者
Yanjuan Geng,Zhebin Yu,Yucheng Long,Liuni Qin,Ziyin Chen,Yongcheng Li,Xin Guo,Guanglin Li
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 6297-6304 被引量:26
标识
DOI:10.1109/lra.2022.3169448
摘要

Dexterous control of robotic hand driven by human motor intent has drawn a lot of attention in both industrial and rehabilitation scenarios. Providing simultaneous and proportional control has become a prevailing solution recently. Towards improving the finger kinematics estimation precision and reducing its computational cost, a convolution model with attention mechanism (CNN-Attention) was proposed in this study. For comparison purpose, two previously used deep learning models, the long short-term memory (LSTM) and the Sparse Pseudo-input Gaussian processes (SPGP) were also included. By using surface electromyography (sEMG) and kinematic signals corresponding to six hand grasp movements, the estimation performance of each of the three models was evaluated with three measures, Pearson Correlation Coefficient (CC), Root Mean Square Error (RMSE), and coefficient of determination (R2) between real and estimated joint angles. The results demonstrated that the proposed CNN-Attention model outperformed LSTM and SPGP significantly ( p -value<0.05), with an average value of CC, RMSE, and R2, 0.87, 9.65 degrees, and 0.73, respectively. Also, the CNN-Attention model is more stable and versatile over various subjects and joint angles in comparison to other models. Additionally, the computational time to build a CNN-Attention was obviously shorter than that to train a LSTM model (43.00 ± 4.25 min vs. 73.40 ± 5.81 min). These findings suggest that the CNN-Attention would be a promising model for continuous estimation of hand movements in the human-machine interaction and cooperation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charitial完成签到,获得积分10
19秒前
27秒前
31秒前
38秒前
40秒前
李健应助孤独的送终采纳,获得10
46秒前
科研通AI6.1应助科研通管家采纳,获得200
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
长言完成签到 ,获得积分10
53秒前
飞常爱你哦完成签到,获得积分10
1分钟前
ok发布了新的文献求助10
1分钟前
研友_VZG7GZ应助meiyi采纳,获得10
1分钟前
少年锦时完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
jiangx完成签到,获得积分10
2分钟前
2分钟前
手可摘星陈同学完成签到 ,获得积分10
2分钟前
jiangx发布了新的文献求助10
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
啵子发布了新的文献求助10
2分钟前
丘比特应助ok采纳,获得10
3分钟前
3分钟前
我是老大应助六子采纳,获得10
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
1234发布了新的文献求助10
3分钟前
3分钟前
3分钟前
谈理想发布了新的文献求助20
3分钟前
ok发布了新的文献求助10
3分钟前
六子发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379