A CNN-Attention Network for Continuous Estimation of Finger Kinematics from Surface Electromyography

运动学 均方误差 计算机科学 人工智能 卷积神经网络 抓住 相关系数 卷积(计算机科学) 模式识别(心理学) 均方根 语音识别 机器学习 数学 人工神经网络 统计 工程类 物理 经典力学 电气工程 程序设计语言
作者
Yanjuan Geng,Zhebin Yu,Yucheng Long,Liuni Qin,Ziyin Chen,Yongcheng Li,Xin Guo,Guanglin Li
出处
期刊:IEEE robotics and automation letters 卷期号:7 (3): 6297-6304 被引量:26
标识
DOI:10.1109/lra.2022.3169448
摘要

Dexterous control of robotic hand driven by human motor intent has drawn a lot of attention in both industrial and rehabilitation scenarios. Providing simultaneous and proportional control has become a prevailing solution recently. Towards improving the finger kinematics estimation precision and reducing its computational cost, a convolution model with attention mechanism (CNN-Attention) was proposed in this study. For comparison purpose, two previously used deep learning models, the long short-term memory (LSTM) and the Sparse Pseudo-input Gaussian processes (SPGP) were also included. By using surface electromyography (sEMG) and kinematic signals corresponding to six hand grasp movements, the estimation performance of each of the three models was evaluated with three measures, Pearson Correlation Coefficient (CC), Root Mean Square Error (RMSE), and coefficient of determination (R2) between real and estimated joint angles. The results demonstrated that the proposed CNN-Attention model outperformed LSTM and SPGP significantly ( p -value<0.05), with an average value of CC, RMSE, and R2, 0.87, 9.65 degrees, and 0.73, respectively. Also, the CNN-Attention model is more stable and versatile over various subjects and joint angles in comparison to other models. Additionally, the computational time to build a CNN-Attention was obviously shorter than that to train a LSTM model (43.00 ± 4.25 min vs. 73.40 ± 5.81 min). These findings suggest that the CNN-Attention would be a promising model for continuous estimation of hand movements in the human-machine interaction and cooperation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
wlj完成签到 ,获得积分10
1秒前
SciGPT应助hohokuz采纳,获得10
1秒前
书立方完成签到 ,获得积分10
2秒前
2秒前
metalmd完成签到,获得积分10
2秒前
研友_08okB8完成签到,获得积分10
3秒前
Zn应助还不如瞎写采纳,获得10
3秒前
迟大猫应助无辜之卉采纳,获得10
3秒前
搜集达人应助无辜之卉采纳,获得10
3秒前
王玉琴发布了新的文献求助20
3秒前
okghy完成签到 ,获得积分10
4秒前
YYY完成签到 ,获得积分10
4秒前
pinging应助肖俊彦采纳,获得10
4秒前
八八发布了新的文献求助20
5秒前
通~发布了新的文献求助30
5秒前
淡定的思松应助Ryan采纳,获得10
5秒前
李来仪发布了新的文献求助10
5秒前
6秒前
封小封完成签到,获得积分10
6秒前
面面完成签到,获得积分20
6秒前
笑点低梦露完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
DD完成签到,获得积分10
8秒前
今非完成签到,获得积分10
8秒前
研友_VZG7GZ应助LiShin采纳,获得10
8秒前
wangye完成签到,获得积分10
9秒前
糜厉完成签到,获得积分10
10秒前
10秒前
希望天下0贩的0应助谢安采纳,获得10
10秒前
11秒前
11秒前
wangye发布了新的文献求助10
11秒前
拼搏起眸完成签到 ,获得积分20
12秒前
12秒前
哈哈哈发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794