Inorganometallic Photocatalyst for CO2 Reduction

光催化 电子转移 同种类的 降级(电信) 材料科学 半导体 光敏剂 催化作用 多相催化 光化学 纳米技术 化学 组合化学 有机化学 光电子学 物理 热力学 电信 计算机科学
作者
Ho‐Jin Son,Chyongjin Pac,Sang Ook Kang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (24): 4530-4544 被引量:72
标识
DOI:10.1021/acs.accounts.1c00579
摘要

ConspectusDuring the last few decades, the design of catalytic systems for CO2 reduction has been extensively researched and generally involves (1) traditional approaches using molecular organic/organometallic materials and heterogeneous inorganic semiconductors and (2) combinatory approaches wherein these materials are combined as needed. Recently, we have devised a number of new TiO2-mediated multicomponent hybrid systems that synergistically integrate the intrinsic merits of various materials, namely, molecular photosensitizers/catalysts and n-type TiO2 semiconductors, and lower the energetic and kinetic barriers between components. We have termed such multicomponent hybrid systems assembled from the hybridization of various organic/inorganic/organometallic units in a single platform inorganometallic photocatalysts. The multicomponent inorganometallic (MIOM) hybrid system onto which the photosensitizer and catalyst are coadsorbed efficiently eliminates the need for bulk-phase diffusion of the components and avoids the accumulation of radical intermediates that invokes a degradation pathway, in contrast to the homogeneous system, in which the free reactive species are concentrated in a confined reaction space. In particular, in energetic terms, we discovered that in nonaqueous media, the conduction band (CB) levels of reduced TiO2 (TiO2(e-)) are positioned at a higher level (in the range -1.5 to -1.9 V vs SCE). This energetic benefit of reduced TiO2 allows smooth electron transfer (ET) from injected electrons (TiO2(e-)) to the coadsorbed CO2 reduction catalyst, which requires relatively high reducing power (at least more than -1.1 V vs SCE). On the other hand, the existence of various shallow surface trapping sites and surface bands, which are 0.3-1.0 eV below the CB of TiO2, efficiently facilitates electron injection from any photosensitizer (including dyes having low excited energy levels) to TiO2 without energetic limitation. This is contrasted with most photocatalytic systems, wherein successive absorption of single high-energy photons is required to produce excited states with enough energy to fulfill photocatalytic reaction, which may allow unwanted side reactions during photocatalysis. In this Account, we present our recent research efforts toward advancing these MIOM hybrid systems for photochemical CO2 reduction and discuss their working mechanisms in detail. Basic ET processes within the MIOM system, including intervalence ET in organic/organometallic redox systems, metal-to-ligand charge transfer of organometallic complexes, and interfacial/outer-sphere charge transfer between components, were investigated by conducting serial photophysical and electrochemical analyses. Because such ET events occur primarily at the interface between the components, the efficiency of interfacial ET between the molecular components (organic/organometallic photosensitizers and molecular reduction catalysts) and the bulk inorganic solid (mainly n-type TiO2 semiconductors) has a significant influence on the overall photochemical reaction kinetics and mechanism. In some TiO2-mediated MIOM hybrids, the chemical attachment of organic or organometallic photosensitizing units onto TiO2 semiconductors efficiently eliminates the step of diffusion/collision-controlled ET between components and prevents the accumulation of reactive species (oxidatively quenched cations or reductively quenched anions) in the reaction solution, ensuring steady photosensitization over an extended reaction period. The site isolation of a single-site organometallic catalyst employing TiO2 immobilization promotes the monomeric catalytic pathway during the CO2 reduction process, resulting in enhanced product selectivity and catalytic performance, including lifetime extension. In addition, as an alternative inorganic solid scaffold, the introduction of a host porphyrin matrix (interlinked in a metal-organic framework (MOF) material) led to efficient and durable photocatalytic CO2 conversion by the new MOF-Re(I) hybrid as a result of efficient light harvesting/exciton migration in the porphyrinic MOF and rapid quenching of the photogenerated electrons by the doped Re(I) catalytic sites. Overall, the case studies presented herein provide valuable insights for the rational design of advanced multicomponent hybrid systems for artificial photosynthesis involving CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
棉花梗发布了新的文献求助60
2秒前
2秒前
SciGPT应助北纬工人采纳,获得10
2秒前
共享精神应助原元采纳,获得10
3秒前
3秒前
Lucas应助LiangYongrui采纳,获得10
3秒前
云胡不喜发布了新的文献求助10
3秒前
迷路的诗槐完成签到,获得积分10
4秒前
4秒前
ZG发布了新的文献求助10
5秒前
CodeCraft应助排骨炖豆角采纳,获得10
5秒前
5秒前
张同学完成签到,获得积分10
6秒前
LINHAI完成签到,获得积分10
6秒前
Argu完成签到,获得积分10
6秒前
酷酷茹嫣发布了新的文献求助10
7秒前
7秒前
weijian发布了新的文献求助10
7秒前
西西完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
兮尔完成签到,获得积分10
8秒前
灰灰完成签到,获得积分10
8秒前
李健应助柒八染采纳,获得10
8秒前
9秒前
9秒前
10秒前
是赤赤呀发布了新的文献求助10
10秒前
林仰完成签到,获得积分10
10秒前
11秒前
kHz完成签到,获得积分10
11秒前
指导灰完成签到 ,获得积分10
12秒前
G_Serron发布了新的文献求助10
12秒前
熠旅发布了新的文献求助10
12秒前
more完成签到,获得积分10
13秒前
13秒前
tgww发布了新的文献求助10
13秒前
搜集达人应助兮尔采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176414
求助须知:如何正确求助?哪些是违规求助? 2827569
关于积分的说明 7962537
捐赠科研通 2488402
什么是DOI,文献DOI怎么找? 1326375
科研通“疑难数据库(出版商)”最低求助积分说明 634955
版权声明 602812